
HEMP light
Part of the HEMP Enterprise Software Analysis and

Design Series
(Holistic Enterprise Mechanization Process)

by David E. Jones

Last Revised 20 Jun 2009

HEMP light Page 1 of 19 © 2009 David E. Jones

Table of Contents

Introduction to HEMP light...3
The Story of HEMP light..3

Gather Requirements...5
Process Story and Experience Story...5

Pitfall: Actor/Role-based Organization..7
Pitfall: Feature-based Organization...7
Pitfall: Headings/Topics First, Detail Later..7
Pitfall: Documenting the “Why” instead of the “What”...8

Actor Definition..8
Requirement Statement...9

Pitfall: Redundancy and Inconsistency in Statements..10
Initial Design...11

Overlap and Gap Analysis...11
Design..12

Screen and Report Outline..12
Functional Wireframe..13
Data Model..14
Initial Data..15

Implementation..17
Post-Implementation Review and Sign-Off..18
Back Page: HEMP light Artifact Flow Diagram..19

HEMP light Page 2 of 19 © 2009 David E. Jones

Introduction to HEMP light
HEMP is a holistic process and series of artifacts used to drive requirements analysis
and solution design in preparation for development and customization of enterprise
systems. It is holistic because the point is to gather, organize, and consider all relevant
requirements (and sometimes less relevant ones) and use them as a basis for the
designs that the system will be based on. HEMP light is a simplified version of HEMP
that is meant for smaller or less formal projects with fewer people involved.

If there are more than a few people involved with specifying requirements or
collaborating on designs then this simplified version of HEMP may leave too many
details undocumented and that will cause problems, especially in the design and
implementation efforts. Those are cases where the more formal and complete
documentation in HEMP Complete, such as use cases and data statements and test
scenarios, are well worth the extra effort required to create them.

One scenario it is good for is a customization effort where a system will be used mostly
as-is with things added and changed as needed to fit the requirements of the specific
end-user organization. This often involves writing a story (or editing an existing generic
story such as those from the Apache OFBiz Universal Business Process Library), doing
an overlap and gap analysis to see what the system covers, and then creating designs
to fill in the gaps found. When this changes from customizing an existing system to
designing and building a new system (even if based on or reusing existing pieces) then
HEMP light may not be adequate and HEMP Complete is recommended.

The idea of the general process is to start with requirements and move toward designs
on which the implementation can be based. Each set of artifacts produced along the
way is meant to lead into the next with an incremental effort that is "easy" when done
based on the previous artifacts.

This takes into account making it easier to change things early on where that change is
cheaper and easier. As these are established and discussed at each stage it should
help those involved to focus on one aspect of the requirements at a time and move from
more general to more specific as incremental decisions are made.

It also takes into account rework as needed based on prior artifacts. For example once
wireframes are created it is possible to do some role-play style testing with end-users.
Based on the feedback from this testing it may be possible to improve the system by
changing the user interface. This is much easier to do when you can refer back to the
requirements that preceded the design so that new designs can still be based on and
reviewed against those requirements. This opens up a lot of flexibility during the design
process to change things and still satisfy the goals and needs that prompted the
automation effort in the first place.

The Story of HEMP light
The story below is an example of the type of story that will be written to gather and
organize requirements. This story corresponds to the artifact flow diagram that is on the
last page of this document.

This short story combines high level process steps with the details for those steps. For
larger stories the more detailed steps are often best kept in separate documents and
then the high level story can tie it all together with sentences that link to documents

HEMP light Page 3 of 19 © 2009 David E. Jones

containing the lower level stories. The Apache OFBiz UBPL is a good example of how
this can be done.

One thing to note is that while it is not recommended to mention system interactions in a
story (because that is a design and not a documentation of a requirement) the word
“system” is used frequently in this particular story. The difference is that the system
referred to here is the system that will be built by following the story, and not a system
that would facilitate in performing this story. The HEMP process could be followed to
take this story and then design and implement a system that does help automate this
process.

And the story begins...

Expert User gathers Requirements: Expert User writes Process Story. While writing
Process Story, Expert User finds requirements that do not fit as part of a story (ie are
not part of any process). For each requirement not part of any process Expert User
writes a Requirement Statement.

Analyst prepares Initial Design: Analyst reviews each step (business activity) of
Process Story. If the process step is already handled by the existing system Analyst
documents how that activity is preformed in the system. If the process step is not
handled by the existing system Analyst documents the gap and then describes how the
user should be able to interact with the system in order to handle the process step.

UI and System Designers formalize and detail system Design: UI Designer reviews
all gaps in the Overlap and Gap Analysis and based on them writes a Screen Outline for
each new screen or screen change described in the user interactions to fill the gap. For
complicated screens where the layout is unclear from the outline, UI Designer creates a
Functional Wireframe to make the layout clear. System Designer reviews all gaps in the
Overlap and Gap Analysis and creates or extends a Data Model that has a place for all
data mentioned in the gaps. System Designer prepares Initial Data based on gaps and
on the Data Model to demonstrate usage of the model, configure settings, and so on.

Developer creates Implementation based on Design: For development in Apache
OFBiz Developer creates Controller Request and View entries, Menu definitions,
Screen definitions, Form definitions and Template implementations, and Service
definitions and implementations, all according to details in the Design. For
developments on other frameworks Developer creates whatever artifacts are necessary
for screens, background processes, and so on to implement according to the Design.

HEMP light Page 4 of 19 © 2009 David E. Jones

Gather Requirements
Process Story and Experience Story
Process Stories are a simple way to document a series of business activities. They
should be written as active verb phrases with each one stating who (actor) does what
(action). The story is written with one activity following another in order of dependency
where relevant, and in logical ordering or grouping otherwise.

The Stories (aka Narratives) should be process oriented and very informal. They should
change frequently as discussions progress and capture everything related to business
processes and business strategies. To get started a high level list of business strategies
and goals may help to organize things and lead to documentation of what needs to be
done in order to reach those goals and pursue the strategies.

In order to focus on requirements and avoid premature design the Stories should not
mention anything to do with “the system” or with system interactions. Consider that
systems are just tools for communication and coordination and all processes can be
expressed in terms of actors in different roles working with other actors. It is very natural
for ideas about system design and other things not relevant to the Stories to come up
while writing them. This is a good thing and these are very valuable for the eventual
system design and implementation. The best thing to do with these ideas is to docment
them as Requirement Statements in order to remember them and make sure they are
represented in later artifacts.

On a side note, while you should avoid talking about the system because you may cross
the line into starting design on the system, you should talk about other systems that
exist and will continue to be used. Treat existing and external systems as Actors like any
other and describe the actions they perform and how other actors will interact with them.
When describing how other actors will interact with system actors try to do so in a
technology neutral way with details about what they do and what information is moved
around, and not about how it is done or how the information moves. Those “hows” are
the design that will be based on these requirements of “whats”.

It is easy to see these as of little value because everyone in the organization already
knows what the high level processes look like. As a group goes through the process of
writing these stories one of the most valuable outcomes is to realize that different
people understand the processes and priorities very differently and this effort gives
everyone a chance to get on the same page, while at the same time establishing an
overall structure and set of goals for the eventual system to meet. These Stories
represent a certain form for requirements that translate well into use cases and system
designs, and are often more difficult to write and make complete than one would think
getting started with them. They really are the opposite of simple and useless being a
rich and well-organized way to document nearly all important requirements.

Initial stories should be from the perspective of the organization, and again, with the
focus on process. In general each story should be no more than a few pages of text with
detail broken down into sub-stories as needed. The top-level story describes everything
the business does. Individual sentences in the top-level story can be expanded in more
detailed “sub-stories”, and going down multiple levels as needed to provide full detail.

These Process Stories are basically a series of sentences describing each process step
in terms of who does what. However, they are meant to be general information and

HEMP light Page 5 of 19 © 2009 David E. Jones

comments about an actor's thoughts and goals can be valuable. The lowest level stories
(the "leaf" stories in the hierarchy) should include around 5-15 steps (sentences), which
is usually a good number of business process steps to include in a use case (which may
eventually be based on these Stories). If you go too much over that look for easy hand-
off points where the story can be broken up into multiple stories, and remember to
change the level above to represent the divided story.

The Process Stories described above are organized top-down, and that is a good way
to write them too. Start with a top-level story that describes general processes that the
business goes through in order to meet its strategic objectives. If the strategy for the
company is not well defined you may need to do that first in order to have something to
refer back to while making decisions about this or that way of doing things. In other
words when you have a good set of strategic objectives defined you can ask which
option best meets those objectives, and if none do keep working until one is defined that
does a good job.

These Process Stories should focus on the "success" or "happy" scenarios, but
especially as lower level (more detailed) Stories are written it is good to consider
important exceptions and alternate flows. Still, to remain focused when writing Stories in
groups it is helpful to focus on the main success path in order to make progress and not
miss important parts of the processes, especially in higher level (less detailed) Stories.
As Process Stories get more detailed alternate scenarios should be included in the flow
(if needed they can be separated or organized later while preparing for transition to the
more formal Use Case documents).

The first pass on Process Stories should try to document what is happening in the
company as it is now. If there is no desire to change how the company is operating then
things can stay in this form. It is more common that changes in the company's
processes will be desired. Once the current processes are documented in story form it
is an excellent starting place and a tool to facilitate discussion about changes in the
process and document them as discussions progress. Some process improvement
efforts may be difficult when working only from these Stories and things will likely come
up when working on the Business Use Cases related to the Stories that will feed back
into more changes to the Stories.

Because Process Stories are from the perspective of the organization (as opposed to
Experience Stories which are from the perspective of a single Actor), questions relevant
for them include: What happens in the organization? Who does what? When something
happens what other things does it make possible? In order for something to happen is
there anything that must happen before? How does each Actor know when they should
do something? When and how does an Actor pass the baton to another Actor? How
does an Actor decide which other Actors to involve or which other processes need to
happen?

One common point of confusion is how to write about existing systems that will stay in
place. One of the “rules” about writing Stories is to not mention “the system”, but that
just means the system to be built and not any existing systems. Existing systems should
simply be treated as Actors that perform actions and that other actors interact with.
Anytime an Actor interacts with another Actor that represents an existing system you
know that an integration between the systems is needed.

Once the Process Stories from an organization perspective are in place it is easy to
identify a list of Actors and define each of them. See the Actor Definitions section for

HEMP light Page 6 of 19 © 2009 David E. Jones

more details. It is also easy to identify the functionality needed based on the process
perspective stories.

Another form of story that can be valuable is a story from the perspective of a specific
Actor. This facilitates gathering details about the concerns of each Actor through a "day
in the life of..." type of format. Questions relevant for Actor Perspective Stories include:
What are the goals of the Actor? What is the Actor trying to do? How will the Actor go
about getting those things done and making sure they are done correctly? What
resources and constraints affect the Actor? How does that Actor interact with other
Actors and with the Organization?

Pitfall: Actor/Role-based Organization

Starting with stories from an Actor perspective and organizing the stories (or other
requirements) by Actor typically leads to redundant and difficult to organize stories
because the same processes will be described multiple times from different
perspectives. It can also increase the chances that important processes or Actors are
not discovered and documented until much later because the stories are derived from
the actors, instead of the actors from the stories. Just remember that when you write in
terms of process it is easy to figure out which Actors there are and what they do, but if
you write in terms of Actors it is hard to figure out what the overall process is. In other
words, you can derive actors from a well written Process Story, but you can't reliably
derive the overall process from even the best written Actor stories.

Pitfall: Feature-based Organization

Even more problematic than starting with actor perspective stories is starting with
functionality or feature perspective stories and organizing stories and other
requirements by features. The biggest problem with this is the tendency to skip the
requirements gathering effort and jump right to designing solutions. When choosing how
to organize of documents remember that features generally have many touch points in
different business processes so starting by writing stories from a feature perspective
causes similar problems to starting from an actor perspective, but typically on a larger
scale with more disconnects causing redundant processes and disorganized
requirements. Just remember that as with Actors when you organize by functionality it
is hard to figure out the processes and the Actors, but when you organize by process
and you know what needs to happen you can more easily design the functionality to
make those things happen.

Pitfall: Headings/Topics First, Detail Later

It may be tempting to try to think in advance about what the process your are writing a
story for will consist of and create an outline for it, and then fill in the detail of each
section. That may be a fine way to write a book or organize things already well
established, but when writing stories it is best to leave things open and let them shake
out as they will, and don't assume to much in the beginning. Take things step my step
and write each step in terms of actor and action (who does what). The biggest problem
with structuring the document first is that by defining a structure you create a box and
then you tend to get stuck in that as you think about the process. Anything outside of the
boxes you've defined, or that crosses between two boxes, may never occur to you or
might be described poorly as you try to work around the boxes you have created. Just
remember it is easier to figure out the structure of a process once you have the process
documented and can review it an find clean hand-off, isolation, and frequency mismatch
points in the process.

HEMP light Page 7 of 19 © 2009 David E. Jones

Pitfall: Documenting the “Why” instead of the “What”

Don't document the “why” as it is too subjective and shifty. Don't try to document
rationale, or the why of doing these things. It is a trap where you spend a lot of time and
get nothing out of it.

It's not that you shouldn't discuss why to do things, just don't try to document it.
Basically documenting the activities gives a concrete framework for discussion and
understanding around why things are done, and discussion around why things are done
leads to decisions about what to do and the "what" is much easier to document.

The goal is to gather relevant information for implementing a business automation
system as quickly and effectively as possible. You could spend all day talking about
why, and if you focus on that instead of what then chances are you WILL spend the
whole day talking about why and it will waste time and make your client and others feel
very frustrated. This frustration part is a big deal. Often people get rather emotional
about how they run their business and if you talk about it in terms of why it is too easy to
get personal (as it is VERY subjective), and too hard to see the real point. If you talk
about it in terms of what (the specific actions) then it is more objective and easier for
everyone to see the impact of doing things a certain way, and how the decision to do
something at one point in the process affects other things elsewhere in the process.

In some situations you won't run into discussing the “why” very much because good
planning and preparation has been done around the processes, and there are only a
few places you'll have to dig into and refine processes to make them concrete enough
to automate. In other situations it is a very different story. Most of the time may be spent
discussing just a few topics because there are issues in them that people are very
frustrated and emotional about. You can talk a little bit about why things were done, but
it often turns out that the reasons for doing certain things in a certain order had nothing
to do with the business goal, and people won't realize it until you look into detail at what
was being done and forget about why. Just stick to talking about the activities and how
they are ordered and what leads to them being ordered that way. In the end you'll
hopefully find a much more effective way to handle what is needed, and result in a
process that should avoid the "majority of the problems that were taking up the majority
of the time."

For example one company had shipping estimates that were too low and in their
process they didn't find out that was the case until after the credit card was charged.
They were able to identify that problem and the pain it caused, and when asked why
they were doing things in that order (that was causing the problem) they were stuck on
the process they had. This included verifying the pick before doing packing which was
such an important aspect of what they do that they couldn't even discuss doing anything
in a different order because that "why" was so important to them. Once the conversation
focused on what was being done and when, they were able to clearly see the cause of
the problem, and see that we weren't talking about having to eliminate the verification
station, it was just necessary to move the changing of the Shipment status to "Packed"
to the packing station when they had weighed the package(s) and had a shipping quote
so they could handle low shipping estimates before the credit card was charged.

Actor Definition
Actor definitions should include a description of each Actor mentioned in the stories.
Actors may be users, groups of users, or even systems. Understanding the actors helps

HEMP light Page 8 of 19 © 2009 David E. Jones

to organize the processes and provides important information about the business
activities each is related to.

Once defined, stories from each actor's perspective can be written. As described in the
stories section these can give different perspectives and help define motivations of
different actors related to the overall effort.

Requirement Statement
While Stories are valuable for organizing a business and the systems that help
automate it, they are not good for capturing everything that is important to consider
when designing and building the systems. There are many requirements that do not fit
well into Stories, or that apply to all Stories.

The most common form of Requirement Statement is to capture business requirements
that apply to all processes and so don't belong in any particular one. When working with
this sort of Requirement Statement make sure it really can't be incorporated into stories
since that is a much easier and more naturally organized way of managing
requirements.

Another form of Requirement Statement is to capture thoughts about tools and system
features and how users might interact with the system, as opposed to Stories which
should avoid these things.

An alternate use of a Requirement Statement is to keep track of ideas that come up in
discussions but that you are not ready to incorporate into stories yet. These “Ideas to
Incorporate” become a simple to-do list and help you make sure things are included
without having to pause to actually include them. This is especially helpful when an idea
comes up that may have many different touch points in different stories, so some real
planning and discussion will be needed before the idea will be fully incorporated.

Requirement Statements are intentionally unstructured and are meant to be an easy
way to capture thoughts while brainstorming or while writing Process Stories so that you
don't have to interrupt the effort of writing the stories. Again these are very informal
ways of documenting requirements that will be incorporated into more formal artifacts
later on, especially when doing System Interaction Use Cases, Screen/Report Outlines,
Data Statements, and other design artifacts.

Like Stories, Statements can be written from different perspectives and with aspects of
the eventual system in mind. One common type of Statement is the Ability Statement,
usually used to describe desired abilities of the system itself. They can also be used to
define abilities of Actors, including users and other systems.

Because of the nature of requirement statements you usually won't have too many of
them, but you may end up with a large number. It is important to keep them organized
as you go, keeping similar and related statements close together, and even creating
categories of statements to help organize them better.

While reviewing and organizing Requirement Statements check each one to see if it
really can't be incorporated into the Process Stories. It is common that a requirement is
thought of as not being part of any process because it touches multiple processes. In
that case, it is far better to adjust each relevant process so that the requirement is not
forgotten when designs are created based on that process.

When working on statements don!t try to make them “complete.” The purpose of the
Process Stories is to help insure that everything is considered and documented

HEMP light Page 9 of 19 © 2009 David E. Jones

somewhere. The purpose of Requirement Statements is to make sure that ideas which
are not appropriate in Process Stories have a place to live until they are incorporated in
the System Interaction Use Cases and later design artifacts.

Pitfall: Redundancy and Inconsistency in Statements

Because statements are usually a result of brainstorming and general ideas that come
up while writing stories, the same ideas will probably come up over and over. It is easy
to create multiple statements that mean the same thing, or even worse something
similar but that contradicts the other statement(s). In fact, by nature redundancy tends
to lead to inconsistency and that inconsistency is something that must be clarified or
resolved before the requirements can be considered ready for the next step. While
redundancy alone leads to inefficiency, inconsistency leads to confusion and can result
in more inconsistency later on that cause problems with design and possibly the
usefulness of the system too. Keeping statements organized and regularly reviewing
and refining the statements as you go, and moving them to Process Stories when
possible, can help reduce or eliminate these issues.

HEMP light Page 10 of 19 © 2009 David E. Jones

Initial Design
Overlap and Gap Analysis
The Overlap and Gap Analysis artifact is based on the Process Story and the
Requirement Statement artifacts. It is structured the same way as the documents, in a
very literal way, since each Overlap and Gap Analysis is simply a response to a
particular Process Story sentence (process step) or Requirement Statement.

In this artifact where there is an overlap the existing system elements that cover the
requirement should be documented in detail, even in the form of step-by-step
instructions for how a user or external system might interact with the existing system to
perform the business activity described in the process step.

When there is a gap this artifact should document any partial overlap, and then go on to
describe general system interactions that the system would need to support in order to
fill the gap and satisfy the requirement. This is the most important part of the Overlap
and Gap Analysis artifact because it is a sort of Initial Design that leads to the more
detailed UI and system designs that lead to the system implementation. Once the
implementation is done (or at least the detailed design is done) you can go back to this
Overlap and Gap Analysis artifact and change the corresponding gap documentation to
represent an overlap instead.

The goal of this artifact is to eventually document how the system can be used to meet
each requirement represented in the Process Story and Requirement Statement
artifacts.

This artifact can be a copy of a Process Story or Requirement Statements document
with the overlaps and gaps documented inline, or it can be a number of small
documents (one for each Process Story sentence or Requirement Statement) that are
linked to from these other artifacts. It is best to keep it separate as you may have
different Overlap and Gap Analysis artifacts done to compare the requirements to
different existing systems, or to explore different designs, and getting back to the goal of
this artifact you would also want to have the 100% overlap document maintained
separately from the original Overlap and Gap Analysis.

HEMP light Page 11 of 19 © 2009 David E. Jones

Design
Screen and Report Outline
This outline is created by reviewing all system interactions described in the Overlap and
Gap Analysis and making sure there is a screen with adequate elements for each
interaction. The outline node for each screen should include information about what is
presented to the user, what is solicited from the user, and all of the exit points from the
screen. These should include links and form submissions, and to what other screens
each exit point can lead to. If there are multiple screens that a single exit point can lead
to it should describe how the target screen is decided. This introduces some notion of
flow between the screens, and that will feed into the screen flow diagram.

For reports in the outline the structure is very similar. Some reports are meant to be part
of a process and have more tactical information. Reports with more strategic information
may exist outside of the normal business process flow and can be listed in a separate
part of the outline.

The Screen/Report Outline is a separate document from the Overlap and Gap Analysis
because it is structured completely differently. A Overlap and Gap Analysis is organized
by business process but the Screen Outline will be organized by screens and what is on
them. Each screen may be involved in various processes or parts of a process, and
conversely each process may be automated with multiple screens.

Each item in the outline should refer back to the gap description (in the Overlap and
Gap Analysis) and business process steps or system interactions that it came from.
While these references to source information are optional, if you run into problems with
consistency between Gap Analysis and Screen Outlines, or with designs in the Screen
Outline that don!t seem to be based on any requirements or preliminary designs, you
might want to consider using this technique or requiring this from your team.

A rough structure for a Screen Outline might look something like:

1.Screen Foo Baz

1.1.Area 1 (top of page)

1.1.1.Static Text XYZ

1.1.2.Dynamic info foo

1.2.Area 2 (bottom of page)

1.2.1.Dynamic title text baz

1.2.2.Form for baz

1.2.2.1.Field 1 - text box

1.2.2.2.Field 2 - drop-down

1.2.2.3.Submit Button (goes to Screen Bar Foo)

2.Screen Bar Foo

2.1.et cetera...

The outline should be created by going through each gap description's system
interaction and creating a place for it on a screen. There will likely be a refinement
process that will require you to move things to different screens, combine or split
screens, and so on, as further system interactions are reviewed. Just like with most of

HEMP light Page 12 of 19 © 2009 David E. Jones

these intermediate artifacts the point is to have something that is easy to create and
change as discussions continue and as decisions are made.

Once the outline is initially complete and all system interactions have been incorporated
it is a good idea to check the design by doing some "role playing". This can be a quick
sanity check to just walk through the processes and make sure each thing described
has a place and is easy to find and use, or more to the point makes it easy to
accomplish the goal defined in the process. Once wireframes are created from the
content of the outline more comprehensive role playing can be done with prospective
end-users, but for now some informal stuff among the designers is enough to help make
sure that nothing was missed and that everything makes sense, as well as create
further opportunities for design ideas and better ways of organizing the screens and
what is on each.

Functional Wireframe
Functional Wireframes should be created for anything that a user will see, including
screens (web pages and desktop application screens), reports, emails, and so on. While
the Screen/Report Outline contains much more detail, and should be used as a
supporting document for the Functional Wireframes, it is difficult to represent spatial
relationships and layout in a text document and a wireframe is great for expressing that
literally. The Functional Wireframe is created using the information in the Screen/Report
Outline.

Functional Wireframes are also useful for testing with prospective end-users. A simple
way to do this is by role playing. This is kind of like you did in high school (or if you were
cool then starting in elementary school and going through and past college...), but way
more boring since you!ll pretend to be either a part of an ERP system or a user of the
system instead of a dwarf, elf, or eog armored super-hobbit. To do this have one person
(typically an analyst or designer), or even a few people, pretend to be the system and
hold the functional wireframes. The prospective end-users will pick an Actor and play
that character. While doing this the person playing the new system should only show the
wireframe and not try to describe what the user should do or how they should do it, but
let the person playing the user figure things out. The user person describes what they
do, and the system person describes how the system responds. Both have the benefit
of having read the documents related to what they are doing, and the system person
should follow this and the design documents carefully, but the user person should not
refer to them or try to follow them and instead try to go about their daily activities or
work toward specific objectives.

To create a Functional Wireframe you can use a more formal approach like a
diagramming tool, or even just sketch it on paper or whiteboard (and scan it or take a
picture of it to digitize it if you need that). A paper sketch is a nice way to do a rough
pass, but they are difficult to change. While a diagramming tool may seem more
cumbersome they are certainly easier to change. There is also the benefit that the
results are nicer looking and often more clear with a diagramming tool, but except for in
the largest of groups that is secondary to the benefit of being easy to change. My
personal preference is to rough out an initial layout on a whiteboard and once things
seem well enough organized create a cleaner wireframe using a diagramming tool.

The process of creating a Functional Wireframe from a Screen Outline is pretty simple.
Just go through each of the visual elements in the outline and draw them in the
wireframe. Remember to include references back to the Screen Outline item that the
screen element came from. When using a diagramming tool that supports layers it is

HEMP light Page 13 of 19 © 2009 David E. Jones

nice to put this information in a separate layer that can be overlaid on top of the main
wireframe, usually with transparent text and shading so that the main wireframe is still
easy to see. For some screens simple is definitely the right word for what needs to be
done! Creating a layout that works and makes sense for screens with lots of elements
or complex interactions can be a lot of work. Some wireframes may require only a few
minutes of work, and others may take days of effort and lots of review with different
people.

In some cases a number of wireframes will need to be created because different parts
of the screen may expand and collapse or popups may appear, or the options in an area
may change as other things are selected on the screen. It is generally easier to create
multiple wireframes than to try to express all of this in a single one. Another thing to
consider is a sort of “flannel board” approach where parts of the screen are blank in the
wireframe and there are various versions of that part of the screen that can be dropped
in or attached, like on a flannel board, to that part of the main screen.

While trying to lay things out visually you may find that things described in the Screen
Outline won!t actually work on a two-dimensional screen of finite size. Feel free to
change the Screen Outline as needed while going through this. In fact, make sure to
because you don!t want these to become inconsistent. In some cases you may even
end up reworking the screens enough to require changes to the system interaction
descriptions in the Use Cases, and then corresponding changes in the Screen Outline.
Just remember that this is a process of refinement and you are looking at the system
from different perspectives as you create different artifacts. Also remember that it is still
pretty easy to change things now and that as you get into more formal artifacts it will
become more difficult and expensive to change things.

Data Model
The Data Model is what will eventually be used to physically persist information that the
applications need in order to function. The model document described here is a
relational database model. While other means of persisting data exist, relational
databases still drive the bulk of the business world and they are likely to remain so
because no other persistence technology can match it in terms of flexible storage and
retrieval and flexible searching and querying. If a different means of organizing and
persisting data is desired (object database, directory/hierarchy datastore, ontology
server, XML document store) then an artifact that better suits it can be substituted here.

The data is vitally important because no matter what the system does as it operates
eventually every system operation will finish and all that will be left to feed into other
operations is the persisted data, either in the main system or in other systems it
integrates with.

While creating a Data Model is a non-trivial task, representing one is pretty simple. The
most important elements are entities (tables) and fields (columns). In a first pass
organizing all of the information into entities and fields is plenty to do. Another important
part is specifying unique identifiers (primary keys) and relationships to other entities
(foreign keys), and you may want to do that in the initial pass or at least just after it.
After getting those in place adding more detail like data types and sizes for each field
can be done.

The Data Model is most easily and effectively created based on the Data Statements
which describe the nature of, and relationships between, the data that the system needs
to keep track of. As with other artifacts it is important to refer back to the artifacts it

HEMP light Page 14 of 19 © 2009 David E. Jones

came from. In HEMP light where Data Statements are not used simply base the Data
Model on the mention of information to track in the Overlap and Gap Analysis.

Experience with data modeling patterns and techniques is vital to getting a good result,
and there are lots of good patterns, and lots of debate about what makes a good
pattern. With modern systems in order to keep things flexible and to reduce the need for
changes in the future it is usually best to err on the side of normalization and split fields
into different tables whenever there is not a really clean one-to-one relationship
between the fields.

When working on a Data Model that will be incorporated into an existing system it is
important to make sure the data model incorporates elements of the existing system
and reuses parts of it as much as possible, and that it extends the model where needed
while maintaining connections to it in order to avoid ending up with an independent and
disconnected data model that limits flexibility and system capabilities. If you know that a
certain set of Data Statements (or mention of information to track in Overlap and Gap
Analysis) maps clearly to parts of the existing data model then you can just refer to
those in this Data Model document.

If you think that a set of information to track might map to one or more parts of the
existing data model but you aren!t sure, then write it out as a set of new entities in the
Data Model document and after it is complete compare it to existing structures to see if
there is a match now that they are in a more similar form. In other words, based on Data
Statements or mention of information to track alone it can be difficult to see if things
match well or not, but after looking at a “clean room” layout of the new data model it will
be easier to compare it to an existing model.

Initial Data
Other terms often used for Initial Data, and different types of Initial Data, include seed
data, demo data, and test data. For any of these the purpose of the data is to
supplement the Data Model in order to help describe different meanings for data and
different options available, or to communicate better how the Data Model is meant to be
used by giving real world examples of what might go in each field.

Seed data is data that it maintained with the code and that code may rely on (including
unique identifier direct references) in order to operate. There are many varieties of seed
data including: statuses, enumerated options, and type options to allow common data
structures to be reused (such as Sales and Purchase Orders which share many but not
all of the same fields and related entities, and which are generally treated very
differently by code). In general seed data should be updated when the code of a system
is updated to make sure the latest code has the options in place that it expects.

There is one exception with seed data that is required for operation but that should only
be loaded once because either the system or a user is expected to change it. One
example of this is a background process definition that goes into the database that the
system changes as it runs that process over time. You don!t want another process
introduced or that process reverted to its original state when the seed data is reloaded
after a code update.

Demo and test data have different purposes, but the same data can generally be used
for both. Demo data is meant to get things setup to make is easy to see how different
parts and features of the system function. This is most valuable when different
combinations of data produce certain results. The Demo data becomes something that
can be used through the user interface of an application to see what it does in different

HEMP light Page 15 of 19 © 2009 David E. Jones

circumstances, and also as a very concise and direct form of self-documentation that
analysts, developers, testers, and others can use to better understand how things are
structured and what sorts of options are available.

Test data is meant more for testing purposes and expands on the idea of Demo data
because it may be significantly more redundant and voluminous in order to support a
wide variety of usually automated test processes. Test data may certainly be used for
manual test processes, and in that case it ends up looking a lot like demo data. So
again these are two purposes for data but the same data can often be used in both
ways with the special variation in form for test data used by automated tests. Both are
useful for better understanding the system and documenting the intended state of data
in different circumstances, or at different steps in the business processes (defined in the
Process Stories) that the system helps automate.

The structure and form of these files varies according to what the system will support. It
is possible to initially create the data in spreadsheet or very generic XML files if no
target system or architecture has been defined yet, and then translate the data as
needed when the system is eventually selected (never underestimate the power of a
“mail-merge” from a spreadsheet to produce text in the form you want it!). Still, knowing
how to format the data, and even better having a tool that can import it and check it
against the Data Model definitions (preferably in a real database) is a great way to avoid
simple errors that must be fixed before the Initial Data is really useable for any purpose.

HEMP light Page 16 of 19 © 2009 David E. Jones

Implementation
Regardless of the tools and reusable implementation artifacts used, there are many
aspects of implementation that apply.

Some tools are lower-level, requiring more development effort, and along with that often
more flexible. For those tools the transition between detailed Design artifacts and the
Implementation artifacts will not be as literal, or in other words there may be many
options for the tool to use to implement what is documented in a particular detailed
Design artifact. When this is the case, especially for larger projects, it is a good idea to
plan in advance on which tools to use and how they will be used relative to the Design
artifacts that need to be implemented.

With the Apache OFBiz Framework, and various frameworks like it, there are tools that
correspond pretty well to typical design artifacts. In the HEMP Complete set of artifacts
there are Design artifacts that correspond fairly literally to the Implementation artifacts.
For HEMP light certain design artifacts are left out and so the implementation effort
involves drawing from less literal sources and doing so on the fly instead of
documenting it first, but the information in the end is the same.

Because Implementation involves the final check of detailed Design artifacts it is
common for designs to be adjusted based on feasibility and level of effort estimates.

The basic responsibility of the Developer is to create Implementation artifacts based on
the detailed Design artifacts, and then to make sure that the resulting system functions
as described in the designs. Before the Post-Implementation steps can happen the
implementation needs to be fairly bug-free, as the point of the Post-Implementation is to
review for closeness to designs, satisfying requirements, and then applicability to the
organization and the various Actors using it.

HEMP light Page 17 of 19 © 2009 David E. Jones

Post-Implementation Review and Sign-Off
Just as the Design artifacts can be reviewed using the Requirement artifacts, the
Implementation artifacts (the system itself) should be reviewed by Developers using the
Design artifacts. In addition to this effort the UI and System Designers should also
review what is implemented according to the detailed designs to make sure they were
interpreted correctly.

To take it one step further and do a final check of meeting requirements and business
applicability the Analysts should review the implementation against the Overlap and
Gap Analysis they created, and also create the variation of the document mentioned
above that has 100% overlaps documented. Once that is done the Expert User and
other end-users can review and test the system based on the Requirements that they
helped gather and document.

The general idea is that the same people involved with creating an artifact should
review the final result against the artifact they created. In a way this means to just go
backwards through the development process to review and test what was implemented.
Each Actor involved represents a stakeholder in the effort and this will assure that they
get a chance to sign-off on the results in a natural way.

When issues are found by an actor reviewing against a specific artifact they should first
determine if the artifact they are responsible for needs to change, and if so make that
change. From there it is a simple effort of going forward through the artifacts again to
see if a change is required in the next artifact, and if that results in a change to the
following artifact, and so on to the implementation itself. And again once that is done the
result can be reviewed by going backwards through the process, eventually hoping to
get all the way back to the Expert User with no issues (or at least no issues significant
enough to require rework...).

HEMP light Page 18 of 19 © 2009 David E. Jones

Back Page: HEMP light Artifact Flow Diagram

HEMP light Page 19 of 19 © 2009 David E. Jones

!"#$%&

'&$($)*+!"#$%&,"-.$/"0"&(#

123$4+'05*"0"&()($6&

,"-.$/"0"&(+7()("0"&(

8/69"##+

7(6/:

;9(6/+

!"!&$($6&

79/""&+

1.(*$&"

2.&9($6&)*+

<$/"=/)0" !)()+>6?"*+

@A&($($"#B

'&$($)*+

!)()

C6&(/6**"/+

,"-."#(+

)&?+D$"E

79/""&

26/0+F+

G"05*)("

>"&.

7"/H$9"

1H"/*)5+)&?+

I)5+;&)*:#$#

,6*"#+,"#56&#$J*"K
AL5"/(+M#"/
;&)*:#(

M'+!"#$%&"/
7:#("0+!"#$%&"/

!"H"*65"/

