
Making Apps with Moqui
Holistic Enterprise Applications Made Easy

by David E. Jones

Copyright 2012 David E. Jones

All Rights Reserved

NOTE: This is an early draft and is meant for
review purposes only. Please do not distribute.

Table of Contents
Foreword! 1
1. Introduction to Moqui! 3

What is the Moqui Ecosystem?! 3
What is Moqui Framework?! 4
Moqui Concepts! 5

Application Artifacts! 5
The Execution Context! 6
The Artifact Stack! 7
Peeking Under the Covers! 7
Development Process! 7
Development Tools! 9

A Top to Bottom Tour! 11
Web Browser Request! 11
Web Service Call! 12
Incoming and Outgoing Email! 12

2. Running Moqui! 13
Download Moqui and Required Software ! 13
The Runtime Directory and Moqui Conf XML File! 13
The Executable War File! 14
Embedding the Runtime Directory in the WAR File ! 16
Building Moqui Framework! 16

3. Framework Tools and Configuration! 18
Execution Context and Web Facade! 18

Web Parameters Map! 19
Factory, Servlet & Listeners! 21
Resource and Cache Facades! 21

Screen Facade ! 22
Screen Definition! 22
Screen/Form Render Templates! 23

Service Facade! 23
Service Naming! 23
Parameter Cleaning, Conversion and Validation! 24
Quartz Scheduler! 24
Web Services! 25

Entity Facade! 25
Multi-Tenant! 26
Connection Pool and Database! 26
Database Meta-Data! 27

Transaction Facade ! 27
Transaction Manager (JTA)! 27

Artifact Execution Facade! 27
Artifact Authorization! 28
Artifact Hit Tracking! 28

User, L10n, Message, and Logger Facades! 28

4. Extensions and Add-ons! 30
The Compelling Component ! 30
Component Directory Structure! 30
Installing a Component ! 31

Load the Component! 31
Mounting Screen(s)! 31
Moqui Conf XML File Settings! 31

5. Create Your First Component! 33
Overview! 33
Part 1! 33

Download Moqui Framework ! 33
Create a Component! 33
Add a Screen! 34
Mount as a Subscreen! 34
Try Included Content! 35

Try Sub-Content! 36
Part 2! 37

My First Entity! 37
Add Some Data! 37
Automatic Find Form! 38
An Explicit Field! 39
Add a Create Form! 40

Part 3! 41
Custom Create Service! 41
Groovy Service! 42

6. Example Component Walkthrough! 44
7. Data and Content! 45

Resources, Content, and JCR ! 45
Accessing Content! 45
Rendering Templates! 45
Running Scripts! 45

Database Model Definition! 45
Entity Definition XML! 45
Entity Extension - XML! 48
Entity Extension - DB! 49

Data Model Patterns! 49
Master Entities ! 49
Detail Entities ! 50
Join Entities! 50
Enumerations! 51
Status with Transition and History! 51

The Entity Facade! 52
Basic CrUD Operations! 52
Finding Entity Records! 53
Flexible Finding with View Entities! 54

8. Logic and Services! 57
Service Definition! 57

Service Implementation! 57
Inline Service Logic! 57
Java Class Methods! 57
Service Scripts! 57
Add Your Own Service Runner! 57

Overview of XML Actions! 57

9. User Interfaces ! 58
XML Screens! 58

Subscreens! 58
Transitions! 60
RESTful Transitions! 63
Parameters and Web Settings! 63
Screen Actions and Pre-Actions! 64
Widgets! 64
Conditions and Fail-Widgets! 65
Custom Elements and Macro Templates! 65

XML Forms! 66
Templates! 66
PDF, CSV, XML and Other Screen Output ! 66

Standalone Screens! 66
Screen Sub-Content ! 66

10. System Interfaces! 67
XML and CSV Output ! 67
Web Services! 67

XML-RPC and JSON-RPC! 67
RESTful Interfaces! 67
Simple Sending and Receiving JSON! 67

Enterprise Integration with Apache Camel! 67
Exporting All Records Related to One or More Records!67
Ad-hoc Data Exports! 68

11. Security! 69
Authentication! 69

Internal Authentication! 69
External Auth with Apache Shiro! 69
Password Options! 69
Login History! 69

Simple Permissions! 69
Artifact-Aware Authorization! 69

Artifact Execution Stack and History! 69
Artifact Authz! 69

Artifact Tarpit ! 70
Audit Logging! 70

12. The Tools Application! 71
Auto Screens! 71
Data View! 71
Entity Tools! 71

Data Edit! 71
Data Export! 71
Data Import! 71
Speed Test! 71

Localization! 71
Service Runner! 72
System Info! 72

Artifact Statistics! 72
Audit Log! 72
Cache Statistics! 72
Server Visits! 72

13. Mantle Business Artifacts! 73
Universal Data Model (UDM)! 73
Universal Service Library (USL)! 73
Universal Business Process Library (UBPL)! 73

Foreword
I am not a professional framework developer. I am, just like you, a
professional application developer. My career is oriented around building
and customizing applications for a wide variety of organizations to help
manage processes and automate information management.

Like any craftsman an application developer needs a good set of tools, and
my quest for a the best tools possible started in 1999 when I got into this
business. At the time Enterprise Java was maturing and going through a
period of standardization to help consolidate and organize the many
different tools and technologies that were available in the marketplace.

There was only one problem: for building large-scale systems like an ERP
application these tools and technologies were painful to develop with,
required massive hardware to run satisfactorily, and were plagued by
inadequate standards that practically guaranteed lock-in to application
servers that featured enterprise-grade price tags. These applications were
also very difficult and expensive to customize and maintain after initial
implementation. In a word, it was horrible.

Various open source alternatives were starting to emerge to compete with
the commercial players that drove much of the standardization, and this
helped with the licensing cost but did little for the inefficiencies in both
development and production performance.

There was a lot of room for improvement. In 2001 I started an open source
project called The Open For Business Project (OFBiz) with the wide ranging
goal of acting as a foundation for all manner of information automation
applications. This was meant to enable consolidated systems and include
eCommerce, ERP, CRM, MRP, and so on. Based on my experience with
enterprise Java tools and exposure to some novel concepts and patterns
people were starting to develop, I designed a very different sort of tool set.
This tool set was not plagued by object mapping to organize data and
encapsulate logic, and embraced the service-oriented design patterns for
internal use that have become the standard for interoperation between
applications.

In addition to technical development tools, a good application developer also
needs a flexible and comprehensive data model to give structure and
consistency to applications developed. Fortunately in early March 2001, just
two months before I started The Open For Business Project, Len Silverston
published The Data Model Resource Book, Revised Edition, Volume 1 and

1

Volume 2. This was a huge expansion and rewrite of an earlier book with a
similar name by Silverston, Inmon, and Graziano in 1997.

The data model concepts and patterns presented in these two volumes
became the foundation for the data model in OFBiz. They have gracefully
acted as a foundation for that system during the growth of the project from a
simple eCommerce application to a full-featured ERP and CRM system that
is used by thousands of organizations and is the basis for over a dozen
commercial and open source extensions.

Over years of working on a wide variety of projects based on OFBiz the
framework was expanded along with the higher level business artifacts in
the project. The ideas for improvements to the framework flowed in steadily,
and some extensions and competitors to it outside of OFBiz emerged as
well. Many of the ideas were incorporated, but as the project grew and as
the community of users and contributors exploded it became more and more
difficult to change fundamental aspects of the system.

I kept a list of dozens of great ideas that constituted major changes to
improve and expand the framework. As the list got longer I knew a different
approach would be necessary to enter the next phase of my aforementioned
quest for the best toolset possible. The result was the birth of the Moqui
Framework as an independent project, and the Mantle Business Artifacts to
provide a generic foundation for an ecosystem of open source projects,
internal applications, and commercial products that go way beyond what
one community could do with a single generic open source project.

This book will help you get started with the Moqui Framework and provide a
reference over months and years of building excellent applications.

2

1. Introduction to Moqui
What is the Moqui Ecosystem?
The Moqui Ecosystem is a set of software packages centered around a
common framework and universal business artifacts. The central packages
(in the Core and Mantle) are intentionally organized as separate open
source projects to keep their purpose, management, and dependencies
focused and clean. Both are managed with a moderated community model,
much like the Linux Kernel.

U
BP

L U
D

M

USL

Mantle

Crust

Custom Apps

Core

Moqui
Framework

Industry SpecificSp
ec

ia
l P

ur
po

se

Sm
all Business

Des
kto

p/M
ob

ile

3

The goal of the ecosystem is to provide a number of interoperating and yet
competing enterprise applications (in the Crust), all based on a common
framework for flexibility and easy customization, and a common set of
business artifacts (data model and services) so they are implicitly integrated.

The ecosystem includes:

• Moqui Framework: facilitate efficient, secure and flexible development
• Mantle Business Artifacts: universal business artifacts to act as a

foundation for your diverse business applications, including:
• Universal Business Process Library (UBPL)
• Universal Data Model (UDM)
• Universal Service Library (USL)

• Crust: themes, tool integrations, and applications for different industries,
company sizes, business areas, etc

The focus of this books is the Moqui Framework, but the last chapter is an
overview of the Mantle Business Artifacts.

What is Moqui Framework?
Moqui Framework is an all-in-one, enterprise-ready application framework
based on Groovy and Java. The framework includes tools for screens,
services, entities, and advanced functionality based on them such as
declarative artifact-aware security and multi-tenancy.

The Framework is well suited for a wide variety of applications from simple
web sites (like moqui.org) and small form-based applications to complex
ERP systems. Applications built with it are easy to deploy on a wide variety
of highly scalable infrastructure software such as Java Servlet containers (or
app servers) and both traditional relational and more modern NoSQL
databases.

Moqui Framework is based on a decade of experience with The Open For
Business Project (now Apache OFBiz, see http://ofbiz.apache.org) and
design and written by the very person who founded that project. Many of the
concepts and approaches, including the pure relational data layer (no
object-relational mapping) and the service-oriented logic layer, stem from
this legacy and are present in Moqui in a more refined and organized form.

With a cleaner design, more straightforward implementation, and better use
of other excellent open source libraries that did not exist when OFBiz was
started in 2001, the Moqui Framework code is only about 15% of the size of
the OFBiz Framework while offering significantly more functionality and
more advanced tools.

The result is a framework that helps you build applications that automatically
handles many concerns that would otherwise require a significant
percentage of overall effort for every application you build.

4

http://ofbiz.apache.org
http://ofbiz.apache.org

Moqui Concepts
Application Artifacts
The Moqui Framework toolset is structured around artifacts that you can
create to represent common parts of applications. In Moqui the term artifact
refers to anything you create as a developer and includes various XML files
as well as scripts and other code. The framework supports artifacts for
things like:

• entities for the relational data model used throughout applications (used
directly, no redundant object-relational mapping)

• screens and forms for web-based and other user interfaces (base
artifacts in XML files with general or user-specific extensions in the
database)

• screen transitions to configure flow from screen to screen and process
input as needed along the way

• services for logic run internally or exposed for remote execution
• ECA (event-condition-action) rules triggered on system events like entity

and service operations and received email messages

Here is a table of common parts of an application and the artifact or part of
an artifact that handles each:

screen XML Screen (rendered as various types of
text, or can be used to generate other UIs;
OOTB support for html, xml, xsl-fo, csv, and
plain text)

form XML Form (defined within a screen; various
OOTB widgets and easy to add custom ones
or customize existing ones)

prepare data for
display

screen actions (defined within a screen, can
call external logic)

flow from one screen
to another

screen transition with conditional and default
responses (defined within the originating
screen, response points to destination screen
or external resource)

process input transition actions (either a single service
defined to match the form and share
validations/etc, or actions embedded in the
screen definition or call external logic)

5

menu automatic based on sub-screen hierarchy and
configured menu title and order for each
screen, or define explicitly

internal service XML service definition and various options for
embedded or external service
implementations

XML-RPC and JSON-
RPC services

internal service with allow-remote=true and
called through generic interfaces using the
natural List and Map structure mappings

RESTful web services internal service called through simple
transition definition supporting path, form
body, and JSON body requests and JSON or
XML responses

remote service calls define an internal service as a proxy with
automatic XML-RPC, JSON-RPC, and other
mappings, or use simple tools for RESTful
and other service types

send email screen designed to be rendered directly as
html and plain text and configured along with
subject, etc in an EmailTemplate record

receive email define an Email ECA rule to call an internal
service that processes the email

use scripts, templates,
and JCR content

access and execute through the Resource
Facade

The Execution Context
The ExecutionContext is the central application-facing interface in the
Moqui API. An instance is created specifically for executing edge artifacts
such as a screen or service. The ExecutionContext, or “ec” for short,
has various facade interfaces that expose functionality for the various tools
in the framework.

The ec also keeps a context map that represents the variable space that
each artifact runs in. This context map is actually a stack of maps and as
each artifact is executed a fresh map is pushed onto the stack, then popped
off it once the artifact is done executing. When reading from the map stack it
starts at the top and goes down until it finds a matching map entry. When

6

writing to the map stack it always writes to the map at the top of the stack
(unless to explicitly reference the root map, ie at the bottom of the stack).

With this approach each artifact can run without concern of interfering with
other artifacts, but still able to easily access data from parent artifacts (the
chain of artifacts that called or included down to the current artifact).
Because the ec is created for the execution of each edge artifact it has
detailed information about every aspect of what is happening, including the
user, messages from artifacts, and much more.

The Artifact Stack
As each artifact is executed and includes or calls other artifacts the artifact
is pushed onto a stack that keeps track of the active artifacts, and is added
to a artifact history list tracking each artifact used.

As artifacts are pushed onto the stack authorization for each artifact is
checked, and security information related to the artifact is tracked. With this
approach authz settings can be simplified so that artifacts that include or call
or artifacts can allow those artifacts to inherit authorization. With inherited
authorization configurations are only needed for key screens and services
that are accessed directly.

Peeking Under the Covers
When working with Moqui Framework you’ll often be using higher-level
artifacts such as XML files. These are designed to support most common
needs and have the flexibility to drop down to lower level tools such as
templates and scripts at any point. At some point though you’ll probably
either get curious about what the framework is doing, or you’ll run into a
problem that will be much easier to solve if you know exactly what is going
on under the covers.

While service and entity definitions are handled through code other artifacts
like XML Actions and the XML Screens and Forms are actually just
transformed into other text using macros in FreeMarker template files. XML
Actions are converted into a plain old Groovy script and then compiled into a
class which is cached and executed. The visual (widget) parts of XML
Screens and Forms are also just transformed into the specified output type
(html, xml, xsl-fo, csv, text, etc) using a template for each type.

With this approach you can easily see the text that is generated along with
the templates that produced the text, and through simple configuration you
can even point to your own templates to modify or extent the OOTB
functionality.

Development Process
Moqui Framework is designed to facilitate implementation with natural
concept mappings from design elements such as screen outlines and

7

wireframes, screen flow diagrams, data statements, and automated process
descriptions. Each of these sorts of design artifacts can be turned into a
specific implementation artifact using the Moqui tools.

These design artifacts are usually best when based on requirements that
define and structure specific activities that the system should support to
interact with other actors including people and systems. These requirements
should be distinct and separate from the designs to help drive design
decisions and make sure that all important aspects of the system are
considered and covered in the designs.

With this approach implementation artifacts can reference the designs they
are based on, and in turn designs can reference the requirements they are
based on. With implementation artifacts that naturally map to design
artifacts both tasking and testing are straightforward.

When actually implementing artifacts based on such designs the order that
artifacts are created is not so important. Different people can even work
simultaneously on things like defining entities and building screens.

For web-based applications, especially public-facing ones that require
custom artwork and design, the static artifacts such as images and CSS can
be in separate files stored along with screen XML files using the same
directory structure that is used for subscreens using a directory with the
same name as the screen. Resources shared among many screens live
naturally under screens higher up in the subscreen hierarchy.

The actual HTML generated from XML Screens and Forms can be
customized by overriding or adding to the FreeMarker macros that are used
to generate output for each XML element. Custom HTML can also be
included as needed. This allows for easy visual customization of the generic
HTML using CSS and JavaScript, or when needed totally custom HTML,
CSS, and JavaScript to get any effect desired.

Web designers who work with HTML and CSS can look at the actual HTML
generated and style using separate CSS and other static files. When more
custom HTML is needed the web designers can produce the HTML that a
developer can put in a template and parameterize as needed for dynamic
elements.

Another option that sometimes works well is to have more advanced web
designers build the entire client side as custom HTML, CSS, and JavaScript
that interacts with the server through a service interface using some form of
JSON over HTTP. This approach also works well with client applications for
mobile or desktop devices that will interact with the application server using
web services. The web services can use the automatic JSON-RPC or XML-
RPC or other custom automatic mappings, or can use custom wrapper
services that call internal services to support any sort of web service
architecture.

8

However your team is structured and however work is to be divided on a
given project, with artifacts designed to handle defined parts of applications
it is easier to split up work and allow people to work in parallel based on
defined interfaces.

Development Tools
For requirements and designs you need a group content collaboration tool
that will be used by users and domain experts, analysts, designers, and
developers. The collaboration tool should support:

• hierarchical documents
• links between documents and parts of documents (usually to headers

within the target document)
• attachments to documents for images and other supporting documents
• full revision history for each document
• threaded comments on each document
• email notification for document updates
• online access with a central repository for easy collaboration

There are various options for this sort of tool, though many do not support
all of the above and collaboration suffers because of it. One good
commercial option is Atlassian Confluence. Atlassian offers a very affordable
hosted solution for small groups along with various options for larger
organizations.

Note that this content collaboration tool is generally separate from your code
repository, although putting this content in your code repository can work if
everyone involved is able to use it effectively. Because Moqui itself can
render wiki pages and pass through binary attachments you might even
consider keeping this in a Moqui component. The main problem with this is
that until there is a good wiki application built on Moqui to allow changing
the content, this is very difficult for less technical people involved.

For the actual code repository there are various good options and this often
depends on personal and organizational preferences. Moqui itself is hosted
on GitHub and hosted private repositories on GitHub are very affordable
(especially for a small number of repositories). If you do use GitHub it is
easy to fork the jonesde/moqui repository to maintain your own runtime
directory in your private repository while keeping up to date with the
changes in the main project code base.

Even if you don’t use GitHub a local or hosted git repository is a great way
to manage source code for a development project. If you prefer other tools
such as Subversion or Mercurial then there is no reason not to use them.

For actual coding purposes you’ll need an editor or IDE that supports the
following types of files:

• XML (with autocompletion, validation, annotation display, etc)

9

• Groovy (for script files and scripts embedded in XML files)
• HTML, CSS, and JavaScript
• FreeMarker (FTL)
• Java (optional)

My preferred IDE these days is IntelliJ IDEA from JetBrains. The free
Community Edition has excellent XML and Groovy support. For HTML, CSS,
JavaScript, and FreeMarker to go beyond a simple text editor you’ll have to
pay for the Ultimate Edition. I implemented most of Moqui, including the
complex FreeMarker macro templates, using the Community Edition. After
breaking down and buying a personal license for the Ultimate Edition I am
happy with it, but the Community Edition is really amazingly capable.

Other popular Java IDEs like Eclipse and NetBeans are also great options
and have built-in or plugin functionality to support all of these types of files. I
personally prefer having autocomplete and other advanced IDE functionality
around, but if you prefer a more simple text editor, then by all means use
what makes you happy and productive.

The Moqui Framework itself is built using Gradle (1.0 or later). While I prefer
the command line version of Gradle (and Git) most IDEs, including IntelliJ
IDEA, include decent user interfaces for these tools that help simplify
common tasks.

10

A Top to Bottom Tour
Web Browser Request
A request from a Web Browser will find
its way to the framework by way of the
Servlet Container (the default is the
embedded Winstone Servlet Container,
also works well with Apache Tomcat or
any Java Servlet implementation). The
Servlet Container finds the requested
path on the server in the standard way
using the web.xml file and will find the
MoquiServlet mounted there. The
MoquiServlet is quite simple and just
sets up an ExecutionContext, then
renders the requested Screen.

The screen is rendered based on the
configured “root” screen for the
webapp, and the subscreens path to
get down to the desired target screen.
Beyond the path to the target screen
there may be a transition name for a
transition of that screen.

Transitions are used to process input
(and not to prepare data for
presentation), which is separated from
the screen actions which are used to
prepare data for presentation (and not
to process input). If there is a transition
name the service or actions of the
transition will be run, a response to the
transition selected (based on conditions
and whether or not there was an error),
and then the response will be followed,
usually to another screen.

When a service is called (often from a
transition or screen action) the Service Facade validates and cleans up the
input map according to the service definition, and then calls the defined
inline or external script, Java method, auto or implicit entity operation, or
remote service.

Entity operations, which interact with the database, should only be called
from services for write operations and can be called from actions anywhere

Database

Web

Servlet
Container

Screen

Service

Entity

Transition Email

Browser

WS/RPC
Client

11

for read operations (transition or screen actions, service scripts/methods,
etc).

Web Service Call
Web Service requests generally follow the same path as a form submission
request from a web browser that is handled by a Screen Transition. The
incoming data will be handled by the transition actions, and typically the
response will be handled by an action that sends back the encoded
response (in XML, JSON, etc) and the default-response for the transition will
be of type “none” so that no screen is rendered and no redirecting to a
screen is done.

Incoming and Outgoing Email
Incoming email is handled through Email ECA rules which are called by the
pollEmailServer service (configured using the EmailServer entity).
These rules have information about the email received parsed and available
to them in structured Maps. If the condition of a rule passes, then the
actions of the rule will be run. Rules can be written to do anything you would
like, typically saving the message somewhere, adding it to a queue for
review based on content, generating an automated response, and so on.

Outgoing email is most easily done with a call to the sendEmailTemplate
service. This service uses the passed in emailTemplateId to lookup an
EmailTemplate record that has settings for the email to render, including
the subject, the from address, the XML Screen to render and use for the
email body, screens or templates to render and attach, and various other
options. This is meant to be used for all sorts of emails, especially
notification messages and system-managed communication like customer
service replies and such.

12

2. Running Moqui
Download Moqui and Required Software
The only required software for the default configuration of Moqui Framework
is the Java JDK version 6 or later. To build the framework from source you’ll
need Gradle version 1.0 (final) or later.

You can download Moqui Framework from SourceForge at:

https://sourceforge.net/projects/moqui/files/

Select the folder for the most recent version and then choose either the
binary or source distribution archive. The binary release of the framework is
named “moqui-<version>.zip” and the source release is named
“moqui-<version>-src.zip”.

The Moqui Framework source is available on GitHub for download and
online browsing here:

https://github.com/jonesde/moqui

Similarly the Mantle Business Artifacts are available on GitHub here:

https://github.com/jonesde/mantle

While you can download Mantle separately through GitHub, there is also a
Moqui Framework plus Mantle archive available on SourceForge.

The Runtime Directory and Moqui Conf XML File
The Moqui Framework has three main parts to deploy:

• Executable WAR File (see below)
• Runtime Directory
• Moqui Configuration XML File

However you use the executable WAR file, you must have a runtime
directory and you may override default settings (in the
MoquiDefaultConf.xml file) with a Moqui Conf XML file, such as the
MoquiProductionConf.xml file in the runtime/conf directory.

The runtime directory is the main place to put components you want to load,
the root files (root screen) for the web application, and general configuration
files. It is also where the framework will put log files, Derby db files (if you
are using Derby), etc. You will eventually want to create your own runtime

13

https://sourceforge.net/projects/moqui/files/
https://sourceforge.net/projects/moqui/files/
https://github.com/jonesde/moqui
https://github.com/jonesde/moqui
https://github.com/jonesde/mantle
https://github.com/jonesde/mantle

directory and keep it in your own source repository. You can use the default
project runtime directory as a starting point for your project one.

When running specify these two properties:

moqui.runtime Runtime directory (defaults to "./runtime" if exists or
just "." if there is no runtime sub-directory)

moqui.conf Moqui Conf XML file (URL or path relative to
moqui.runtime)

There are two ways to specify these two properties:

• MoquiInit.properties file on the classpath
• System properties specified on the command line (with java -D

arguments)

The Executable War File
Yep, that's right: an executable WAR file. The main things you can do with
this (with example commands to demonstrate, modify as needed):

Load Data $ java -jar moqui-<version>.war -load

Run embedded web
server

$ java -jar moqui-<version>.war

Deploy as WAR (in
Tomcat, etc)

$ cp moqui-<version>.war \
../tomcat/webapps

Display settings and
help

$ java -jar moqui-<version>.war -help

When running the data loader (with the -load argument), the following
options are available as additional parameters:

-types=<type>[,<type>] Data types to load, matches the
entity-facade-xml.@type attribute
(can be anything, common are: seed,
seed-initial, demo, ...)

-location=<location> Location of a single data file to load

-timeout=<seconds> Transaction timeout for each file,
defaults to 600 seconds (10 minutes)

14

-dummy-fks Use dummy foreign-keys to avoid
referential integrity errors

-use-try-insert Try insert and update on error instead of
checking for record first

-tenantId=<tenantId> ID for the Tenant to load the data into

Note that If no -types or -location argument is used all known data files
of all types will be loaded.

The examples above show running with the moqui.runtime and
moqui.conf values coming from the MoquiInit.properties file on the
classpath. To specify these parameters on the command line, use
something like:

$ java -Dmoqui.conf=conf/MoquiStagingConf.xml -jar
moqui-<version>.war

Note that the moqui.conf path is relative to the moqui.runtime
directory, or in other words the file lives under the runtime directory.

When running the embedded web server (without the -load or -help
parameters) the Winstone Servlet Container is used. For a full list of
arguments available in Winstone, see:
http://winstone.sourceforge.net/#commandLine

For your convenience here are some of the more common Winstone
arguments to use:

--httpPort set the http listening port. -1 to disable,
Default is 8080

--httpListenAddress set the http listening address. Default is all
interfaces

--httpsPort set the https listening port. -1 to disable,
Default is disabled

--ajp13Port set the ajp13 listening port. -1 to disable,
Default is 8009

--controlPort set the shutdown/control port. -1 to disable,
Default disabled

15

http://winstone.sourceforge.net/#commandLine
http://winstone.sourceforge.net/#commandLine

Embedding the Runtime Directory in the WAR File
Moqui can run with an external runtime directory (independent of the WAR
file), or with the runtime directory embedded in the WAR file. The embedded
approach is especially helpful when deploying to WAR hosting providers like
Amazon ElasticBeanstalk. To create a WAR file with an embedded runtime
directory:

1. Add components and other resources as needed to the runtime
directory

2. Change ${moqui.home}/MoquiInit.properties with desired settings
3. Change Moqui conf file (runtime/conf/Moqui*Conf.xml) as needed
4. Create a derived WAR file based on the moqui.war file and with your

runtime directory contents and MoquiInit.properties file with one of:
a. $ gradle addRuntime
b. $ ant add-runtime

5. Copy the created WAR file (moqui-plus-runtime.war) to deployment
target

6. Run server (or restart/refresh to deploy live WAR)

The resulting WAR file will have the runtime directory under its root directory
(a sibling to the standard WEB-INF directory) and all JAR files under the
WEB-INF/lib directory.

Building Moqui Framework
Moqui Framework uses Gradle for building from source. There are various
custom tasks to automate frequent things, but most work is done with the
built-in tasks from Gradle. There is also an Ant build file for a few common
tasks, but not for building from source.

Build JAR, WAR $ gradle build

Load All Data $ gradle load $ ant load

Run Server in WAR $ gradle run $ ant run

Clean up JARs, WAR $ gradle clean

Clean up ALL built and
runtime files (logs, dbs, etc)

$ gradle cleanAll

Note that in Gradle the load and run tasks depend on the build task. With
this dependency the easiest to get a new development system running with
a populated database is:

$ gradle load run

16

This will build the war file, run the data loader, then run the server. To stop it
just press <ctrl-c> (or your preferred alternative).

17

3. Framework Tools and
Configuration
What follows is an overview of the various tools in the Moqui Framework
and corresponding configuration elements in the Moqui Conf XML file. The
default settings are in the MoquiDefaultConf.xml file, which is included
in the executable WAR file in a binary distribution of Moqui Framework. This
is a great file to look at to see some of the settings that are available and
what they are set to by default. If you downloaded a binary distribution of
Moqui Framework you can view this file online at (note that this is from the
master branch on GitHub and may differ slightly from the one you
downloaded):

https://github.com/jonesde/moqui/blob/master/framework/
src/main/resources/MoquiDefaultConf.xml

Any setting in this file can be overridden in the Moqui Conf XML file that is
specified at runtime along with the runtime directory (and generally in the
conf directory under the runtime directory). The two files are merged
before any settings are used, with the runtime file overriding the default one.
Because of this one easy way to change settings is simply copy from the
default conf file and paste into the runtime one, and then make changes as
desired.

Execution Context and Web Facade
The Execution Context is the central object in the Moqui Framework API.
This object maintains state within the context of a single server interaction
such as a web screen request or remote service call. Through the Execution
Context object you have access to a number of “facades” that are used to
access the functionality of different parts of the framework. There is detail
below about each of these facades.

The main state tracked by the Execution Context is the variable space, or
“context”, used for screens, actions, services, scripts, and even entity and
other operations. This context is a basically a hash or map with name/value
entries and supports protected variable spaces with push() and pop()
methods that turn it into a stack of maps. As different artifacts are executed
they automatically push() the context before writing to it, and then pop()
the context to restore its state before finishing. Writing to the context always
puts the values into the top of the stack, but when reading the named value

18

is searched for at each level on the stack starting at the top so that “parent”
variable spaces are visible.

The context is the literal variable space for the executing artifact wherever
possible. In screens when XML actions are executed the results go in the
local context. Even Groovy scripts embedded in service and screen actions
share a variable space and so variables declared exist in the context for
subsequent artifacts.

Some common expressions you’ll see in Moqui-based code (using Groovy
syntax) include:

• refer to the current variable context: ec.context
• refer to the “exampleId” field from the context: ec.context.exampleId
• set the exampleId to “foo”: ec.context.exampleId = “foo”
• for inline scripts you can also just do: exampleId = “foo”

For an ExecutionContext instance created as part of a web request
(HttpServletRequest) there will be a special facade called the Web Facade.
This facade is used to access information about the servlet environment for
the context including request, response, session, and application
(ServletContext). It is also used to access the state (attributes) of these
various parts of the servlet environment including request parameters, re-
quest attributes, session attributes, and application attributes.

Web Parameters Map
The request parameters “map” (ec.web.requestParameters) is a
special map that contains parameters from the URL parameter string, inline
URL parameters (using the “/~name=value/” format), and multi- part form
submission parameters (when applicable). There is also a special
parameters map (ec.web.parameters) that combines all of the other
maps in the following order (with later overriding earlier): request
parameters, application attributes, session attributes, and request attributes.
That parameters map is a stack of maps just like the context so if you write
to it the values will go in the top of the stack which is the request attributes.

For security reasons the request parameters map is canonicalized and
filtered using the OWASP ESAPI library. This and the Service Facade
validation help to protect agains XSS and injection attacks.

19

Database
(Derby)

Entity
Facade

Service
Facade

Screen
Facade

Apache
XML-RPC

Dzhuvinov
JSON-
RPC

JTA/DBCP
(Atomikos)

Resource
Facade

Transaction
Facade

Web
Facade

Groovy

Free
Marker

Quartz
Scheduler

ehcache

OWASP
ESAPI

Servlet
(Tomcat)

JCR
(Jackrabbit)

WikiText
jQuery
Core &

UI

Cache
Facade

L10n Facade

Logger
Facade

Message
Facade

Execution
Context

Execution Context
Factory

Artifact Execution
Facade

User Facade

Moqui Servlet,
Listeners

Apache
Camel

NoSQL
Database

20

Factory, Servlet & Listeners
Execution Context instances are created by the Execution Context Factory.
This can be done directly by your code when needed, but is usually done by
a container that Moqui Framework is running in.

The most common way to run Moqui Framework is as a webapp through
either a WAR file deployed in a servlet container or app server, or by running
the executable WAR file and using the embedded Winstone Servlet
Container. In either case the Moqui root webapp is loaded and the WEB-
INF/web.xml file tells the servlet container to load the MoquiServlet, the
MoquiSessionListener, and the MoquiContextListener. These are default
classes included in the framework, and you can certainly create your own if
you want to change the lifecycle of the ExecutionContextFactory and
ExecutionContext.

With these default classes the ExecutionContextFactory is created by the
MoquiContextListener on the contextInitialized() event, and is destroyed by
the same class on the contextDestroyed() event. The Execu- tionContext is
created using the factory by the MoquiServlet for each request in the
doGet() and doPost() methods, and is destroyed by the MoquiServlet at the
end of each request by the same method.

Resource and Cache Facades
The Resource Facade is used to access and execute resource such as
scripts, templates, and content. The Cache Facade is used to do general
operations on caches, and to get a reference to a cache as an
implementation of the Cache interface. In addition to supporting basic get/
put/remove/etc operations you can get statistics for each cache, and also
modify cache properties such as timeouts, size limit, and eviction algorithm.
The default Cache Facade implementation is basically just a wrapper
around ehCache, and beyond the cache-facade configuration in the moqui-
conf file you can configure additional options using the ehcache.xml file.

The Resource Facade uses the Cache Facade to cache plain text by its
source location (for getLocationText() method), compiled Groovy and XML
Actions scripts by their locations (for the runScriptInCurrent- Context
method), and compiled FreeMarker (FTL) templates also by location (for the
renderTemplateIn- CurrentContext method).

There is also a cache used for the small Groovy expressions that are
scattered throughout XML Screen and Form definitions, and that cache is
keyed by the actual text of the expression instead of by a location that it
came from (for the evaluateCondition, evaluateContextField, and
evaluateStringExpand methods).

21

For more generic access to resources the getLocationReference()
method returns an implementation of the ResourceReference interface.
This can be used to read resource contents (for files and directories), and
get information about them such as content/MIME type, last modified time,
and whether or not it exists. These resource references are used by the rest
of the framework to access resources in a generic and extensible way.
Implementations of the ResourceReference interface can be
implemented as needed and de- fault implementations exist for the following
protocols/schemes: http, https, file, ftp, jar, classpath, component, and
content (JCR, ie Apache Jackrabbit).

Screen Facade
The API of the Screen Facade is deceptively simple, mostly just acting as a
factory for the ScreenRender interface implementation. Through the
ScreenRender interface you can render screens in a variety of contexts, the
most common being in a service with no dependence on a servlet container,
or in response to a HttpServletRequest using the
ScreenRender.render(request, response) convenience method.

Generally when rendering and a screen you will specify the root screen
location, and optionally a sub- screen path to specify which subscreens
should be rendered (if the root screen has subscreens, and instead of the
default-item for each screen with subscreens). For web requests this sub-
screen path is simply the request “pathInfo” (the remainder of the URL path
after the location where the webapp/servlet are mounted).

Screen Definition
The real magic of the Screen Facade is in the screen definition XML files.
Each screen definition can specify web-settings, parameters, transitions with
responses, subscreens, pre-render actions, render-time actions, and
widgets. Widgets include subscreens menu/active/panel, sections,
container, container-panel, render-mode-specific content (ie html, xml, csv,
text, xsl-fo, etc), and forms.

There are two types of forms: form-single and form-list. They both have a
variety of layout options and support a wide variety of field types. While
Screen Forms are primarily defined in Screen XML files, they can also be
extended for groups of users with the DbForm and related entities.

One important note about forms based on a service (using the auto-
fields-service element) is that various client-side validations will be
added automatically based on the validations defined for the service the
form field corresponds to.

22

Screen/Form Render Templates
The output of the ScreenRender is created by running a template with
macros for the various XML elements in screen and form definitions. If a
template is specified through the ScreenRender.macroTemplate() method
then it will be used, otherwise a template will be determined with the
renderMode and the configuration in the screen-facade.screen-text-output
element of the moqui-conf file. You can create your own templates that
override the default macros, or simply ignore them altogether, and configure
them in the moqui-conf file to get any output you want. There is an example
of one such template in the runtime/template/screen-macro/
ScreenHtmlMacros.ftl file, with the override configuration in the
runtime/conf/development/MoquiDevConf.xml file.

The default HTML screen and form template uses jQuery Core and UI for
dynamic client-side interactions. Other JS libraries could be used by
modifying the screen HTML macros as described above, and by changing
the theme data (defaults in runtime/component/webroot/data/
WebrootThemeData.xml file) to point to the desired JavaScript and CSS
files.

Service Facade
The Service Facade is used to call services through a number of service call
interfaces for synchronous, asynchronous, scheduled and special (TX
commit/rollback) service calls. Each interface has different methods to build
up information about the call you want to do, and they have have methods
for the name and parameters of the service.

When a service is called the caller doesn’t need to know how it is
implemented or where it is located. The service definition abstracts that out
to the service definition so that those details are part of the implementation
of the service, and not the calling of the service.

Service Naming
Service names are composed of 3 parts: path, verb, and noun. When
referring to a service these are combined as: “${path}.${verb}#$
{noun}”, where the hash/pound sign is optional but can be used to make
sure the verb and noun match exactly. The path should be a Java package-
style path such as org.moqui.impl.UserServices for the file at
classpath://service/org/moqui/impl/UserServices.xml. While
it is somewhat inconvenient to specify a path this makes it easier to
organize services, find definitions based on a call to the service, and
improve performance and caching since the framework can lazy-load
service definitions as they are needed.

23

That service definition file will be found based on that path with location
patterns: “classpath://service/$1” and “component://.*/
service/$1” where $1 is the path with ‘.’ changed to ‘/’ and “.xml”
appended to the end.

The verb (required) and noun (optional) parts of a service name are
separate to better to describe what a service does and what it is acting on.
When the service operates on a specific entity the noun should be the name
of that entity.

The Service Facade supports CrUD operations based solely on entity
definitions. To use these entity- implicit services just use a service name with
no path, a noun of create, update, or delete, a hash/pound sign, and the
name of the entity. For example to update a UserAccount use the service
name “update#UserAccount”. When defining entity-auto services the
noun must also be the name of the entity, and the Service Facade will use
the in- and out-parameters along with the entity definition to determine what
to do (most helpful for create operations with primary/secondary sequenced
IDs, etc).

The full service name combined from the examples in the paragraphs above
would look like this:

org.moqui.impl.UserServices.update#UserAccount

Parameter Cleaning, Conversion and Validation
When calling a service you can pass in any parameters you want, and the
service caller will clean up the parameters based on the service definition
(remove unknown parameters, convert types, etc) and validate parameters
based on validation rules in the service definition before putting those
parameters in the context for the service to run. When a service actually
runs the parameters will be in the ec.context map along with other inherited
context values, and will be in a map in the context called parameters to
access the parameters segregated from the rest of the context.

One important validation is configured with the parameter.allow-html
attribute in the service definition. By default no HTML is allowed, and you
can use that attribute to allow any HTML or just safe HTML for the service
parameter. Safe HTML is determined using the OWASP ESAPI and
Antisamy libraries, and configuration for what is considered safe is done in
the antisamy-esapi.xml file.

Quartz Scheduler
The Service Facade uses Quartz Scheduler for asynchronous and
scheduled service calls. Some options are available when actually calling
the services and configuration in the moqui-conf file, but to configure Quartz
itself use the quartz.properties file (there is a default in the

24

framework/src/main/resources/ directory that may be overridden on
the classpath).

Web Services
For Web Services the Service Facade uses Apache XML-RPC for incoming
and outgoing XML-RPC service calls, and Dzhuvinov JSON-RPC for
incoming and outgoing JSON-RPC 2.0 calls. The outgoing calls are handled
by the RemoteXmlRpcServiceRunner and
RemoteJsonRpcServiceRunner classes, which are configured in the
service-facade.service-type element in the moqui-conf file. To add
support for other outgoing service calls through the Service Facade
implement the ServiceRunner interface (as those two classes do) and add a
service-facade.service-type element for it.

Incoming web services are handled using default transitions defined in the
runtime/component/webroot/screen/MoquiRoot/rpc.xml screen.
The remote URL for these, if MoquiRoot.xml is mounted on the root (“/”)
of the server, would be something like: “http://hostname/rpc/xml” or
“http://hostname/rpc/json”. To handle other types of incoming
services similar screen transitions can be added to the rpc.xml screen, or
to any other screen.

For REST style services a screen transition can be declared with a HTTP
request method (get, put, etc) as well as a name to match against the
incoming URL. For more flexible support of parameters in the URL beyond
the transition’s place in the URL path values following the transition can be
configured to be treated the same as named parameters. To make things
easier for JSON payloads they are also automatically mapped to
parameters and can be treated just like parameters from any other source,
allowing for easily reusable server-side code. To handle these REST service
transitions an internal service can be called with very little configuration,
providing for an efficient mapping between exposed REST services and
internal services.

Entity Facade
The Entity Facade is used for common database interactions including
create/update/delete and find operations, and for more specialized
operations such as loading and creating entity XML data files. While these
operations are versatile and cover most of the database interactions needed
in typical applications, sometimes you need lower-level access, and you can
get a JDBC Connection object from the Entity Facade that is based on the
entity-facade datasource configuration in the moqui-conf file.

Entities correspond to tables in a database and are defined primarily in XML
files. These definitions include list the fields on the entity, relationships

25

betweens entities, special indexes, and so on. Entities can be extended
using database record with the UserField and related entities.

Each individual record is represented by an instance of the EntityValue
interface. This interface extends the Map interface for convenience, and has
additional methods for getting special sets of values such as the primary key
values. It also has methods for database interactions for that specific record
including create, update, delete, and refresh, and for getting setting primary/
secondary sequenced IDs, and for finding related records based on
relationships in the entity definition. To create a new EntityValue object
use the EntityFacade.makeValue() method, though most often you’ll
get EntityValue instances through a find operation.

For finding (querying) entity records use the EntityFind interface. To get
an instance of this interface use the EntityFacade.makeFind() method.
This find interface allows you to set various conditions for the find (both
where and having, more convenience methods for where), specify fields to
select and order by, set offset and limit values, and flags including use
cache, for update, and distinct. Once options are set you can call methods
to do the actual find including: one(), list(), iterator(), count(),
updateAll(), and deleteAll().

Multi-Tenant
When getting an EntityFacade instance from the ExecutionContext
the instance retrieved will be for the active tenantId on the
ExecutionContext (which is set before authentication either specified by
the user, or set by the servlet or a listener before the request is processed).
If there is no tenantId the EntityFacade will be for the “DEFAULT” tenant
and use the settings from the moqui-conf file. Otherwise it will use the active
tenantId to look up settings on the Tenant* entities that will override the
defaults in the moqui-conf file for the datasource.

Connection Pool and Database
The Entity Facade uses Atomikos TransactionsEssentials for XA-aware
database connection pooling by default. To configure Atomikos use the
jta.properties file. With configuration in the entity-facade element
of the moqui-conf file you can change this to use any DataSource or
XADataSource in JNDI instead.

The default database included with Moqui Framework is Apache Derby. This
is easy to change with configuration in the entity-facade element of the
moqui-conf. To add a database not yet supported in the
MoquiDefaultConf.xml file, add a new database-list.database
element. Currently databases supported by default include Apache Derby,
HSQL, MySQL, Postgres, Oracle, and MS SQL Server.

26

Database Meta-Data
The first time (in each run of Moqui) the Entity Facade does a database
operation on an entity it will check to see if the table for that entity exists. If
not it will create the table, indexes, and foreign keys (for related tables that
already exist only) based on the entity definition. If a table for the entity does
exist it will check the columns and add any that are missing, and can do the
same for indexes and foreign keys.

Transaction Facade
Transactions are used mostly for services and screens. Service definitions
have transaction settings, based on those the service callers will pause/
resume and begin/commit/rollback transactions as needed. For screens a
transaction is always begun for transitions (if one is not already in place),
and for rendering actual screens a transaction is only begun if the screen is
setup to do so (mostly for performance reasons).

You can also use the Transaction Facade for manual transaction
demarcation. The JavaDoc comments have some code examples with
recommended patterns for begin/commit/rollback and for pause/begin/
commit/rollback/resume to use try/catch/finally clauses to make sure the
transaction is managed properly.

When debugging transaction problems, such as tracking down where a
rollback-only was set, the TransactionFacade can also be use as it
keeps a stack trace when setRollbackOnly is called. It will automatically
log this on later errors, and you can manually get those values at other
times too.

Transaction Manager (JTA)
By default the Transaction Facade uses the Atomikos
TransactionsEssentials library (also used for a connection pool by the Entity
Facade). To configure Atomikos use the jta.properties file. Any JTA
transaction manager, such as one from an application server, can be used
instead through JNDI by configuring the locations of the
UserTransaction and TransactionManager implementations in the
entity-facade element of the moqui-conf file.

Artifact Execution Facade
The Artifact Execution Facade is called by other facades to keep track of
which artifacts are “run” in the life of the ExecutionContext. It keeps both a
history of all artifacts, and a stack of the current artifacts be- ing run. For
example if a screen calls a subscreen and that calls a service which does a
find on an entity the stack will have (bottom to top) the first screen, then the
second screen, then the service and then the entity.

27

Artifact Authorization
While useful for debugging and satisfying curiosity, the main purpose for
keeping track of the stack of artifacts is for authorization and permissions.
There are implicit permissions for screens, transitions, services and entities
in Moqui Framework. Others may be added later, but these are the most
important and the one supported for version 1.0 (see the ArtifactType
Enumeration records in the SecurityTypeData.xml file for details).

The ArtifactAuthz* and ArtifactGroup* entities are used to
configure authorization for users (or groups of users) to access specific
artifacts. To simplify configuration authorization can be “inheritable” meaning
that not only is the specific artifact authorized but also everything that it
uses.

There are various examples of setting up different authorization patterns in
the ExampleSecurityData.xml file. One common authorization pattern
is to allow access to a screen and all of its subscreens where the screen is a
higher-level screen such as the ExampleApp.xml screen that is the root
screen for the example app. Another common pattern is that only a certain
screen within an application is authorized but the rest of it is not. If a
subscreen is authorized, even if its parent screen is not, the user will be able
to use that subscreen.

Artifact Hit Tracking
There is also functionality to track performance data for artifact “hits”. This is
done by the Execution Context Factory instead of the Artifact Execution
Facade because the Artifact Execution Facade is created for each
Execution Context, and the artifact hit performance data needs to be tracked
across a large number of artifact hits both concurrent and over a period of
time. The data for artifact hits is persisted in the ArtifactHit and
ArtifactHitBin entities. The ArtifactHit records are associated with
the Visit record (one visit for each web session) so you can see a history
of hits within a visit for auditing, user experience review, and various other
purposes.

User, L10n, Message, and Logger Facades
The User Facade is used to manage information about the current user and
visit, and for login, authentication, and logout. User information includes
locale, time zone, and currency. There is also the option to set an effective
date/time for the user that the system will treat as the current date/time
(through ec.user.nowTimestamp) instead of using the current system
date/time.

The L10n (Localization) Facade uses the locale from the User Facade and
localizes the message it receives using cached data from the

28

LocalizedMessage entity. The EntityFacade also does localization of entity
fields using the LocalizedEntityField entity. The L10n Facade also has
methods for formatting currency amounts, and for parsing and formatting for
Number, Timestamp, Date, Time, and Calendar objects using the Locale
and TimeZone from the User Facade as needed.

The Message Facade is used to track messages and error messages for the
user. The error message list (ec.message.errors) is also used to determine if
there was an error in a service call or other action.

The Logger Facade is used to log information to the system log. This is
meant for use in scripts and other generic logging. For more accurate and
trackable logging code should use the SLF4J Logger class
(org.slf4j.Logger) directly. The JavaDoc comments in the
LoggerFacade interface include example code for doing this.

29

4. Extensions and Add-ons
The Compelling Component
A Moqui Framework Component is a set of artifacts that make up an
application built on Moqui, or reusable artifacts meant to be used by other
components such as the mantle-udm and mantle-usl components, a
theme component, or a component that integrates some other tool or library
with Moqui Framework to extend the potential range of applications based
on Moqui.

Component Directory Structure
The structure of a component is driven by convention as opposed to
configuration. This means that you must use these particular directory
names, and that all Moqui components you look at will be structured in the
same way.

• data - Entity XML data files with root element “entity-facade-xml”,
loaded by @type attribute matching types specified on command line
(executable war with -load), or all types if no type specified

• entity - All Entity Definition and Entity ECA XML files in this directory will
be loaded; Entity ECA files must be in this directory and have the dual
extension “.eecas.xml”

• lib - JAR files in this directory will be added to the classpath when the
webapp is deployed

• screen - Screens are referenced explicitly (usually by “component://*”
URL), so this is a convention

• script - Scripts are referenced explicitly (usually by “component://*”
URL), so this is a convention; Groovy, XML Action, and any other scripts
should go under this directory

• service - Services are loaded by path to the Service Definition XML file
they are defined in, and those paths are found either under these
component service directories or under “classpath://service/”;
Service ECA files must be in this directory and have the dual extension
“.secas.xml”; Email ECA files must be in this directory and have the
extension “.emecas.xml”

30

Installing a Component
Load the Component
There are two ways to tell Moqui about a component:

• put the component directory in the runtime/component directory
• add a component-list.component element in the moqui-conf file

Mounting Screen(s)
Each webapp in Moqui (including the default webroot webapp) must have a
root screen specified in the “moqui-conf.webapp-
list.webapp.@root-screen-location” attribute. The default root
screen is called MoquiRoot which is located at “runtime/component/
webroot/screen/MoquiRoot.xml”.

For screens from your component to be available in a screen path under the
MoquiRoot screen you need to make each top-level screen in your
component (i.e. each screen in the component’s screen directory) a
subscreen of another screen that is an ancestor of the MoquiRoot screen.
There are two ways to do this (this does not include putting it in the
MoquiRoot directory as an implicit subscreen since that is not an option for
screens defined elsewhere):

• add a “screen.subscreens.subscreen-item” element to the parent
screen (what the subscreen will be under); for example see the apps
screen (runtime/component/webroot/screen/WebRoot/
apps.xml) where the example and tools root screens are “mounted”

• add a record in the SubscreensItem entity, specifying the parent screen
in the screenLocation field, the subscreen in the
subscreenLocation field, the “mount point” in the subscreenName
field (equivalent to the subscreens-item.@name attribute), and either
“ALL_USERS” in the userGroupId field for it to apply to all users, or an
actual userGroupId for it to apply to just that user group

If you want your screen to use its own decoration and be independent from
other screens, put it under the “MoquiRoot” screen directly. To have your
screen part of the default apps menu structure and be decorated with the
default apps decoration, put it under the “apps” screen.

Moqui Conf XML File Settings
You may want have things in your component add to or modify various
things that come by default with Moqui Framework, including:

• Resource Reference: see the moqui-conf.resource-
facade.resource-reference element

• Template Renderer: see the moqui-conf.resource-
facade.template-renderer element

31

• Screen Text Output Template: see the moqui-conf.screen-
facade.screen-text-output element

• Service Type Runner: see the moqui-conf.service-
facade.service-type element

• Explicit Entity Data and Definition files: see the moqui-conf.entity-
facade.load-entity and moqui-conf.entity-facade.load-
data elements

There are examples of all of these in the MoquiDefaultConf.xml file
since the framework uses the moqui-conf file for its own default
configuration.

32

5. Create Your First
Component
Overview
This chapter is a step-by-step guide to creating and running your own Moqui
component with a user interface, logic, and database interaction.

• Part 1: To get started you'll be creating your own component and a simple
"Hello world!" screen.

• Part 2: Continuing from there you'll define your own entity (database
table) and add forms to your screen to find and create records for that
entity.

• Part 3: To finish off the fun you will create some custom logic instead of
using the default CrUD logic performed by the framework based on the
entity definition.

The running approach used in this document is a simple one using the
embedded servlet container.

Part 1
Download Moqui Framework
If you haven't already downloaded Moqui Framework, do that now. You
should have a moqui-<version> directory with at least the moqui-
<version>.war file and the default runtime directory that comes with
Moqui. Start out in that moqui root directory.

If you have a clean download, do a data load and try running it real quick:

$ ant load
$ ant run

In your browser go to http://localhost:8080/, log in as John Doe with
the button in the lower-left corner of the screen, and look around a bit.

Now quit (<ctrl>-c in the command line) and you're ready for the next step.

Create a Component
Moqui follows the "convention over code" principle for components, so all
you really have to do to create a Moqui component is create a directory:

33

http://localhost:8080/
http://localhost:8080/

$ cd runtime/component
$ mkdir tutorial

Now go into the directory and create some of the standard directories that
you'll use later in this tutorial:

$ cd tutorial
$ mkdir data
$ mkdir entity
$ mkdir screen
$ mkdir script
$ mkdir service

With you component in place just start up Moqui (with “$ ant run” or the
like).

Add a Screen
Using your preferred IDE or text editor add a screen XML file in:

runtime/component/tutorial/screen/tutorial.xml

For now let this be a super simple screen with just a "Hello world!" label in it.
The contents should look something like:

<screen require-authentication="false">
 <widgets>
 <label type="h1" text="Hello world!"/>
 </widgets>
</screen>

Note that the require-authentication attribute is set to false. By
default this is true and the screen will require authentication and
authorization. We’ll discuss the artifact-aware configurable authorization
later in the Security chapter.

Mount as a Subscreen
To make your screen available it needs to be added as a subscreen to a
screen that is already under the root screen somewhere. In Moqui screens
the URL path to the screen and the menu structure are both driven by the
subscreen hierarchy, so this will setup the URL for the screen and add a
menu tab for it.

For the purposes of this tutorial we'll use the existing root screen and
header/footer/etc that are in the included runtime directory. This runtime
directory has a webroot component with the root screen at:

runtime/component/webroot/screen/webroot.xml

34

On a side note, the root screen is specified in the Moqui Conf XML file using
the webapp-list.webapp.root-screen element, and you can have
multiple elements to have different root screens for different host names.

To make the subscreen hierarchy more flexible this root screen only has a
basic HTML head and body, with no header and footer content, so let's put
our screen under the "apps" screen which adds a header menu and will give
our screen some context. Modify the apps screen by changing:

runtime/component/webroot/screen/webroot/apps.xml

Add a subscreens-item element under the subscreens element in the
apps.xml file like:

<subscreens-item name="tutorial" menu-title="Tutorial"
 location="component://tutorial/screen/tutorial.xml"/>

The name attribute specifies the value for the path in the URL to the screen,
so your screen is now available in your browser at:

http://localhost:8080/apps/tutorial

If you don't want to modify an existing screen file and still want to mount
your screen as a subscreen of another you can do so with a record in the
database that looks like this (in the entity-facade-xml format with elements
representing entities and attributes representing fields):

<SubscreensItem screenLocation="component://webroot/
screen/webroot/apps.xml" subscreenName="tutorial"
userGroupId="ALL_USERS" subscreenLocation="component://
tutorial/screen/tutorial.xml" menuTitle="Tutorial"
menuIndex="1" menuInclude="Y"/>

Try Included Content
Instead of using the label element we can get the HTML from a file that is
"under" the screen.

First create a simple HTML file located at:

runtime/component/tutorial/screen/tutorial/hello.html

The HTML file can contain any HTML, and since this will be included in a
screen whose parent screens take care of header/footer/etc we can keep it
very simple:

<h1>Hello world! (from hello.html file)</h1>

Now just explicitly include the HTML file in the tutorial.xml screen
definition using the render-mode.text element:

<screen>
 <widgets>
 <label type="h1" text="Hello world!"/>

35

http://localhost:8080/apps/tutorial
http://localhost:8080/apps/tutorial

 <render-mode>
 <text type="html" location="component://
tutorial/screen/tutorial/hello.html"/>
 </render-mode>
 </widgets>
</screen>

So what is this render-mode thingy? Moqui XML Screens are meant to
platform agnostic and may be rendered in various environments. Because of
this we don't want anything in the screen that is specific to a certain mode of
rendering the screen without making it clear that it is. Under the render-
mode element you can have various sub-elements for different render
modes, even for different text modes such as HTML, XML, XSL-FO, CSV,
and so on so that a single screen definition can be rendered in different
modes and produce output as needed for each mode.

The screen is available at the same URL, but now includes the content from
the HTML file instead of having it inline as a label in the screen definition.

Try Sub-Content
Another way to show the contents fo the hello.html file is to treat it as
screen sub-content.

To do this the hello.html file must by in a sub-directory with the same
name as the screen, ie in a tutorial directory as a sibling of the
tutorial.xml file.

Now all we have to do is:

• tell the tutorial.xml screen to include child content by setting the
screen.@include-child-content attribute to true

• tell the screen where to include subscreens and child content by adding a
widgets.subscreens-active element

With those done your screen XML file should look like:

<screen include-child-content="true">
 <widgets>
 <label type="h1" text="Hello world!"/>
 <subscreens-active/>
 </widgets>
</screen>

To see the content now you'll need to go to a different URL to tell Moqui that
you want the hello.html file that is under the tutorial screen:

http://localhost:8080/apps/tutorial/hello.html

36

http://localhost:8080/apps/tutorial/hello.html
http://localhost:8080/apps/tutorial/hello.html

Part 2
My First Entity
An entity is a basic tabular data structure, and usually just a table in a
database. An entity value is equivalent to a row in the database. Moqui does
not do object-relational mapping, so all we have to do is define an entity, and
then start writing code using the Entity Facade (or other higher level tools) to
use it.

To create a simple entity called "Tutorial" with fields "tutorialId" and
"description" create an entity XML file at:

runtime/component/tutorial/entity/TutorialEntities.xml

That contains:

<entities>
 <entity entity-name="Tutorial"
 package-name="tutorial">
 <field name="tutorialId" type="id" is-pk="true"/>
 <field name="description" type="text-long"/>
 </entity>
</entities>

If you're running Moqui in dev mode the entity definition cache clears
automatically so you don't have to restart, and for production mode or if you
don't want to wait (since Moqui does start very fast) you can just stop and
start the JVM.

How do you create the table? Unless you turn the feature off (in the Moqui
Conf XML file) the Entity Facade will create the table the first time the entity
is used if it doesn't already exist.

Add Some Data
The Entity Facade has functionality to load data from, and write data to,
XML files that basically elements that match entity names and attributes that
map field names.

We'll create a UI to enter data later on, and you can use the Auto Screen or
Entity Data UI in the Tools application to work with records in your new
entity. Data files are useful for seed data that code depends on, data for
testing, and data to demonstrate how a data model should be used. So, let's
try it.

Create an entity facade XML file at:

runtime/component/tutorial/data/TutorialData.xml

That contains:

<entity-facade-xml type="seed">
37

 <Tutorial tutorialId="TestOne"
 description="Test one description."/>
 <Tutorial tutorialId="TestTwo"
 description="Test two description."/>
</entity-facade-xml>

To load this just run “$ ant load” or one of the other load variations
described in the Running Moqui chapter.

Automatic Find Form
Add the XML screen definition below as a subscreen for the tutorial
screen by putting it in the file:

runtime/component/tutorial/screen/tutorial/
FindTutorial.xml

<screen>
 <transition name="findTutorial">
 <default-response url="."/></transition>

 <actions>
 <entity-find entity-name="Tutorial"
 list="tutorialList">
 <search-form-inputs/>
 </entity-find>
 </actions>

 <widgets>
 <form-list name="ListTutorials"
 list="tutorialList"
 transition="findTutorial">
 <auto-fields-entity entity-name="Tutorial"
 field-type="find-display"/>
 </form-list>
 </widgets>
</screen>

This screen has a few key parts:

• transition Think of links between screens as an ordered graph where
each screen is a node and the transitions defined in each screen are how
you go from that screen to another (or back to the same), and as part of
that transition possibly run actions or a service.

• A single transition can have multiple responses with conditions
and for errors resulting in transition to various screens as needed by
your UI design.

38

• This particular transition very simply just refers back to the current
screen.

• actions.entity-find There is just one action run when this screen is
rendered: an entity-find.

• Normally with an entity-find element (or in the Java API an
EntityFind object) you would specify conditions, fields to order by, and
other details about the find to run.

• In this case we are doing a find on an entity using standard
parameters from an XML Form, so we can use the search-form-
inputs sub-element to handle these automatically.

• To get an idea of what the parameters should be like just view the
HTML source in your browser that is generated by the XML Form.

• widgets.form-list This is the actual form definition, specifically for a
"list" form for multiple records/rows (as opposed to a "single" form).

• The name here can be anything as long as it is unique within the XML
Screen.

• Note that the list refers to the result of the entity-find in the
actions block, and the transition attribute refers to the
transition defined at the top of the screen.

• Since the goal was to have a form automatically defined based on an
entity we use the auto-fields-entity element with the name of
our Tutorial entity, and find-display option for the field-type
attribute which creates find fields in the header and display fields for
each record in the table body.

To view this screen use this URL:

http://localhost:8080/apps/tutorial/FindTutorial

An Explicit Field
Instead of the default for the description field, what if you wanted to specify
how it should look at what type of field it should be?

To do this just add a field element inside the form-list element, and
just after the auto-fields-entity element, like this:

<form-list name="ListTutorials" list="tutorialList"
 transition="findTutorial">
 <auto-fields-entity entity-name="Tutorial"
 field-type="find-display"/>
 <field name="description">
 <header-field show-order-by="true">
 <text-find hide-options="true"/>
 </header-field>
 <default-field><display/></default-field>
 </field>
</form-list>

39

http://localhost:8080/apps/tutorial/FindTutorial
http://localhost:8080/apps/tutorial/FindTutorial

Because the field name attribute is the same as a field already created by
the auto-fields-entity element it will override that field. If the name
was different an additional field would be created. The result of this is
basically the same as what was automatically generated using the auto-
fields-entity element, and this is how you would do it explicitly.

Add a Create Form
Let's add a button that will pop up a Create Tutorial form, and a transition to
process the input.

First add the transition to the FindTutorial.xml screen you created
before, right next to the findTutorial transition:

<transition name="createTutorial">
 <service-call name="create#Tutorial"/>
 <default-response url="."/>
</transition>

This transition just calls the create#Tutorial service, and then goes
back to the current screen.

Where did the create#Tutorial service come from? We haven't defined
anything like that yet. The Moqui Service Facade supports a special kind of
service for entity CrUD operations that don't need to be defined, let alone
implemented. This service name consists of two parts, a verb and a noun,
separated by a hash (#). As long as the verb is create, update, store, or
delete and the noun is a valid entity name the Service Facade will treat it as
an implicit entity-auto service and do the desired operation. It does so based
on the entity definition and the parameters passed to the service call. For
example, with the create verb and an entity with a single primary key field if
you pass in a value for that field it will use it, otherwise it will automatically
sequence a value using the entity name as the sequence key.

Next let's add the create form, in a hidden container that will expand when a
button is clicked. Put this inside the widget element, just above the form-
list element in the original FindTutorial screen you created before so
that it appears above the list form in the screen:

<container-dialog id="CreateTutorialDialog"
 button-text="Create Tutorial">
 <form-single name="CreateTutorial"
 transition="createTutorial">
 <auto-fields-entity entity-name="Tutorial"
 field-type="edit"/>
 <field name="submitButton">
 <default-field title="Create">
 <submit/></default-field>
 </field>
 </form-single>

40

</container-dialog>

The form definition refers to the transition you just added to the screen,
and uses the auto-fields-entity element with edit for the field-
type to generate edit fields. The last little detail is to declare a button to
submit the form, and it's ready to go. Try it out and see the records appear in
the list form that was part of the original screen.

Part 3
Custom Create Service
The createTutorial transition from our screen above used the implicit
entity-auto service create#Tutorial. Let's see what it would look like to
define and implement a service manually.

First lets define a service and use the automatic entity CrUD
implementation. Put the services XML text below in a file in this location:
runtime/component/tutorial/service/tutorial/
TutorialServices.xml

<services>
 <service verb="create" noun="Tutorial"
 type="entity-auto">
 <in-parameters>
 <auto-parameters include="all"/>
 </in-parameters>
 <out-parameters>
 <auto-parameters include="pk"
 required="true"/>
 </out-parameters>
 </service>
</services>

This will allow all fields of the Tutorial entity to be passed in, and will always
return the PK field (tutorialId). Note that with the auto-parameters
element we are defining the service based on the entity, and if we added
fields to the entity they would be automatically represented in the service.

Now change that service definition to add an inline implementation as well.
Notice that the service.@type attribute has changed, and the actions
element has been added.

<service verb="create" noun="Tutorial" type="inline">
 <in-parameters>
 <auto-parameters include="all"/>
 </in-parameters>
 <out-parameters>

41

 <auto-parameters include="pk" required="true"/>
 </out-parameters>
 <actions>
 <entity-make-value entity-name="Tutorial"
 value-field="tutorial"/>
 <entity-set value-field="tutorial"
 include="all"/>
 <if condition="!tutorial.tutorialId">
 <entity-sequenced-id-primary
 value-field="tutorial"/>
 </if>
 <entity-create value-field="tutorial"/>
 </actions>
</service>

Now to call the service instead of the implicit entity-auto one just change the
transition to refer to this service:

<transition name="createTutorial">
 <service-call
name="tutorial.TutorialServices.create#Tutorial"/>
 <default-response url="."/>
</transition>

Note that the service name for a defined service like this is like a fully
qualified Java class name. It has a "package", in this case "tutorial" which is
the directory (possibly multiple directories separated by dots) under the
component/service directory. Then there is a dot and the equivalent of the
class name, in this case "TutorialServices" which is the name of the
XML file the service is in, but without the .xml extension. After that is
another dot, and then the service name with the verb and noun optionally
separated by a hash (#).

Groovy Service
What if you want to implement the service in Groovy (or some other
supported scripting language) instead of the inline XML Actions? In that
case the service definition would look like this:

42

<service verb="create" noun="Tutorial" type="script"
 location="component://tutorial/script/tutorial/
createTutorial.groovy">
 <in-parameters>
 <auto-parameters include="all"/>
 </in-parameters>
 <out-parameters>
 <auto-parameters include="pk" required="true"/>
 </out-parameters>
</service>

Notice that the service.@type attribute has changed to script, and there
is now a service.@location attribute which specifies the location of the
script.

Here is what the script would look like in that location:

EntityValue tutorial = ec.entity.makeValue("Tutorial")
tutorial.setFields(context, true, null, null)
if (!tutorial.tutorialId)
tutorial.setSequencedIdPrimary()
tutorial.create()

When in Groovy, or other languages, you'll be using the Moqui Java API
which is based on the ExecutionContext class which is available in the script
with the variable name "ec". For more details on the API see the API
JavaDocs and specifically the doc for the ExecutionContext class which has
links to the other major API interface pages.

43

http://www.moqui.org/apiJavadoc/index.html
http://www.moqui.org/apiJavadoc/index.html
http://www.moqui.org/apiJavadoc/index.html
http://www.moqui.org/apiJavadoc/index.html
http://www.moqui.org/apiJavadoc/org/moqui/context/ExecutionContext.html
http://www.moqui.org/apiJavadoc/org/moqui/context/ExecutionContext.html

6. Example Component
Walkthrough

44

7. Data and Content
Resources, Content, and JCR
Accessing Content

Rendering Templates

Running Scripts

Database Model Definition
Entity Definition XML
Let’s start with a simple entity definition that shows the most common
elements. This is an actual entity that is part of Moqui Framework:

<entity entity-name="DataSource"
 package-name="moqui.basic" cache="true">
 <field name="dataSourceId" type="id" is-pk="true"/>
 <field name="dataSourceTypeEnumId" type="id"/>
 <field name="description" type="text-medium"/>
 <relationship type="one" title="DataSourceType"
 related-entity-name="Enumeration">
 <key-map field-name="dataSourceTypeEnumId"/>
 </relationship>
 <seed-data>
 <moqui.basic.EnumerationType
 description="Data Source Type"
 enumTypeId="DataSourceType"/>
 <moqui.basic.Enumeration
 description="Purchased Data"
 enumId="DST_PURCHASED_DATA"
 enumTypeId="DataSourceType"/>
 </seed-data>
</entity>

45

Just like a Java class an entity has a package name and the full name of the
entity is the package name plus the entity name, in the format:

${package-name}.${entity-name}

Based on that pattern the full name of this entity:

moqui.basic.DataSource

This example also has the entity.@cache attribute set to true, meaning
that it will be cached unless the code doing the find says otherwise.

The first field (dataSourceId) has the is-pk attribute set to true, meaning
it is one of the primary key fields on this entity. In this case it is the only
primary key field, but any number of fields can have this attribute set to true
to make them part of the primary key.

The third field (description) is a simple field to hold data. It is not part of
the primary key, and it is not a foreign key to another entity.

The field.@type attribute is used to specify the data type for the field.
The default options are defined in the MoquiDefaultConf.xml file with
the database-list.dictionary-type element. These elements
specify the default type settings for each dictionary type and there can be an
override to this setting for each database using the database.database-
type element.

You can use these same elements to add your own types in the data type
dictionary. Those custom types won’t appear in autocomplete for the
field.@type attribute in your XML editor unless you change the XSD file
to add them there as well, but they will still function just fine.

The second field (dataSourceTypeEnumId) is a foreign key to the
Enumeration entity, as denoted by the relationship element in this entity
definition. The two records in under the seed-data element define the
EnumerationType to group the Enumeration options, and one of the
Enumeration options for the dataSourceTypeEnumId field. The records
under the seed-data element are loaded with the command-line -load
option (or the corresponding API call) along with the “seed” type.

There is an important pattern here that allows the framework to know which
enumTypeId to use to filter Enumeration options for a field in
automatically generated form fields and such. Notice that the value in the
relationship.@title attribute matches the enumTypeId. In other
words, for enumerations anyway, there is a convention that the
relationship.@title value is the type ID to use to filter the list.

This is a pattern used a lot in Moqui and in the Mantle Business Artifacts
because the Enumeration entity is used to manage types available for
many different entities.

46

In this example there is a key-map element under the relationship
element, but that is only necessary if the field name(s) on this entity does
not match the corresponding field name(s) on the related entity. In other
words, because the foreign key field is called dataSourceTypeEnumId
instead of simply enumId we need to tell the framework which field to use. It
knows which field is the primary key of the related entity (Enumeration in
this case), but unless the field names match it does not know which fields on
this entity correspond to those fields.

In most cases you can use something more simple without key-map
elements like:

 <relationship type="one"
 related-entity-name="Enumeration"/>

The seed-data element allows you to define basic data that is necessary
for the use of the entity and that is an aspect of defining the data model.
These records get loaded into the database along with the entity-
facade-xml files where the @type attribute is set to “seed”.

With this introduction to the most common elements of an entity definition,
lets now look at some of the other elements and attributes available in an
entity definition.

• other entity attributes
• group-name: Each datasource available through the Entity Facade is

used by putting an entity in the group for that datasource. The value
here should match a value on the moqui-conf.entity-
facade.datasource.@group-name attribute in the Moqui Conf
XML file. If no value is specified will default to the value of the moqui-
conf.entity-facade.@default-group-name attribute. By
default configuration the valid values include transactional
(default), analytical, and tenantcommon.

• sequence-bank-size: The size of the sequence bank to keep in
memory. Each time the in-memory bank runs out the seqNum in the
SequenceValueItem record will be incremented by this amount.

• sequence-primary-stagger: The maximum amount to stagger
the sequenced ID. If 1 the sequence will be incremented by 1,
otherwise the current sequence ID will be incremented by a random
value between 1 and staggerMax.

• sequence-secondary-padded-length: If specified front-pads the
secondary sequenced value with zeroes until it is this length. Defaults
to 2.

• optimistic-lock: Set to true to have the Entity Facade compare
the lastUpdatedStamp field in memory to the one in the database
before doing an update on the record. If the timestamps don’t match
an error will be generated. Defaults to false (no timestamp locking).

47

• no-update-stamp: By default the Entity Facade adds a single field
(lastUpdatedStamp) to each entity for use in optimistic locking and
data synchronization. If you do not want it to create that stamp field for
this entity then set this to false.

• cache: can be set to these values (defaults to false):
• true: use cache for finds (code may override this)
• false: no cache for finds (code may override this)
• never: no cache for finds (code may NOT override this)

• authorize-skip: can be set to these values (defaults to false):
• true: skip all authz checks for this entity
• false: do not skip authz checks
• create: skip authz checks for create operations
• view: skip authz checks for finds or read-only operations
• view-create: skip authz checks for find and create ops

• other field attributes
• encrypt: Set to true to encrypt this field in the database. Defaults to
false (not encrypted).

• enable-audit-log: Set to true to log all changes to the field along
with when it was changed and the user who changes. The data is
stored using the EntityAuditLog entity. Defaults to false (no
audit logging).

• enable-localization: If set to true gets on this field will be
looked up with the LocalizedEntityField entity and if there is a
matching record the localized value will be returned instead of the
original record's value. Defaults to false for performance reasons,
only set to true for fields that will have translations.

While some database optimizations must be done in the database itself
because so many such features vary between databases, you can declare
indexes along with the entity definition using the index element. As an
element under the entity element it would look something like this:

<index name=”EX_NAME_IDX1” unique=”true”>
 <index-field name=”exampleName”/>
</index>

Entity Extension - XML
An entity can be extended without modifying the XML file where the original
is defined. This is especially useful when you want to extend an entity that is
part of a different component such as the Mantle Universal Data Model
(mantle-udm) or even part of the Moqui Framework and you want to keep
your extensions separate.

This is done with the extend-entity element which can go anywhere in
any entity definition XML file. This element has basically all of the same
attributes and sub-elements as the entity element used to define the
original entity. Simply make sure the @entity-name and @package-name

48

match the same attributes on the original entity element and anything
else you specify will add to or override the original entity.

Here is an example if an XML snippet to extend the
moqui.example.Example entity:

<extend-entity entity-name="Example"
 package-name="moqui.example">
 <field name="auditedField" type="text-medium"
 enable-audit-log="true"/>
 <field name="encryptedField" type="text-medium"
 encrypt="true"/>
</extend-entity>

Entity Extension - DB
You can also extend an entity with a database record using the UserField
entity. This is a bit different from extending an entity with the extend-
entity XML element because it is a virtual extension and the data actually
goes in a separate data structure using the UserFieldValue entity.

The main reason for this difference is that User Fields are generally added
for a group of users or a single user, and are not visible outside the group
they are associated with. You can use the ALL_USERS User Group to have
a User Field applies to all users.

Even though it operates this way under the covers, from the perspective of
the EntityValue object it is treated the same way as any other field on the
entity.

Here is an example element from the ExampleTypeData.xml file showing
how you would add a testUserField field accessible by all users to the
moqui.example.Example entity:

<moqui.entity.UserField
 entityName="moqui.example.Example"
 fieldName="testUserField" userGroupId="ALL_USERS"
 fieldType="text-long" enableAuditLog="Y"
 enableLocalization="N" encrypt="N"/>

Data Model Patterns
There are various useful data model patterns that Moqui Framework has
conventions and functionality to help support. These data model patterns
are also used extensively in the Moqui and Mantle data models.

Master Entities
A Master Entity is one whose records exist independent of other entities,
and generally has a single field primary key.

49

To set a primary sequenced ID, which is the sequenced value for the
primary key of a master entity, use the
EntityValue.setSequencedIdPrimary() method. You can also
manually set the primary key field to any value, as long as it is unique.

Detail Entities
A Detail Entity adds detail to a Master Entity for fields that have a one-to-
many relationship with the Master. The primary key is usually two fields and
one of the fields is the single primary key field of the master entity. The
second field is a special sort of sequenced ID that instead of having an
absolute sequence value its value is in the context of the master entity’s
primary key.

An example of a detail entity is ExampleItem, which is a detail to the
master entity Example. ExampleItem has two primary keys: exampleId
(the primary key field of the master entity) and exampleItemSeqId which
is a sub-sequence to distinguish the detail records within the context of a
master record.

To populate the secondary sequenced ID first set the master’s primary key
(exampleId for ExampleItem), then use the
EntityValue.setSequencedIdSecondary() method to automatically
populate it (for ExampleItem the exampleItemSeqId).

A single master entity can have multiple detail entities associated with it to
structure distinct data as needed.

Join Entities
A Join Entity is used to associate Master Entities, usually two. A Join Entity
is a physical representation of a many-to-many relationship between entities
in a logical model.

A join entity is useful for tracking associated records among the master
entities, and also for any data that is associated with both master entities as
opposed to just one of them. For example if you want to specify a sequence
number for one master entity record in the context of a record of the other
master entity, the sequence number field should go on the join entity and not
on either of the master entities.

The join entity may have a single generated primary key, or a natural
composite primary key consisting of the single primary key field of each of
the master entities and optionally a fromDate field with a corresponding
thruDate field that is not part of the join entity’s primary key.

One example of this is the ExampleFeatureAppl entity which joins
together the Example and ExampleFeature master entities. The
ExampleFeatureAppl entity has three primary key fields: exampleId (the
PK of the Example entity), exampleFeatureId (the PK of the

50

ExampleFeature entity), and a fromDate. It also has a thruDate field to
go along with the fromDate PK field.

To better describe the relationship between an Example and an
ExampleFeature, the ExampleFeatureAppl entity also has a
sequenceNum field for ordering features within and example, and a
exampleFeatureApplEnumId field to describe how the feature applies to
the example (Required, Desired, or Not Allowed).

To see the actual entity definition and seed data for the
ExampleFeatureAppl entity see the ExampleEntities.xml file (in the
example component that comes with Moqui Framework).

Enumerations
An Enumeration is simply a pre-configured set of possible values.
Enumerations are used to describe single records or relationships between
records. An entity may have multiple fields enumerated values.

The entity in Moqui where all enumerations are stored is named
Enumeration, and values in it are split by type with a record in the
EnumerationType entity.

When a field is to have a constrained set of possible enumerated values it
should have the suffix “EnumId”, like the exampleTypeEnumId field on the
Example entity. For each field there should also be a relationship element
to describe the relationship from the current entity to the Enumeration
entity. The @title attribute on the relationship element should have
the same value as the enumTypeId that is used for the Enumeration
records that are possible values for that field. Generally the @title
attribute should be the same as the enum field’s name up to the “EnumId”
suffix. For example the relationship title for the exampleTypeEnumId field
is ExampleType.

Status with Transition and History
Another useful data concept is tracking the status of a record. Various
business concepts have a lifecycle of some sort that is easily tracked with a
set of possible status values. The possible status values are tracked using
the StatusItem entity and exist in sets distinguished by records in the
StatusType entity.

A set of status values are kind of like nodes in a graph and the transitions
between those nodes represent possible changes from one status to
another. The possible transitions from one status to another are configured
using records in the StatusValidChange entity.

If an entity has only a single status associated with it the field to track the
status can simply be named statusId. If an entity needs to have multiple

51

status values then the field name should have a distinguishing prefix and
end with “StatusId”.

There should be a relationship defined for each status field to tie the current
entity to the StatusItem entity. Similar to the pattern with the Enumeration
entity, the @title attribute on the relationship element should match
the statusTypeId on each StatusItem record.

The audit log feature of the Entity Facade is the easiest way to keep a
history of status changes including who made the change, when it was
made, and the old and new status values. To turn this on just use set the
@enable-audit-log attribute to true on the entity.field element.
With this the field definition would look something like:

<field name="statusId" type="id"
 enable-audit-log="true"/>

The Entity Facade
Basic CrUD Operations
The basic CrUD operations for an entity record are available through the
EntityValue interface. There are two main ways to get an EntityValue
object:

• Make a Value (use ec.entity.makeValue(entityName))
• Find a Value (more details on this below)

Once you have an EntityValue object you can call the create(),
update(), or delete() methods to perform the desired operation. There
is also a createOrUpdate() method that will create a record if it doesn’t
exist, or update it if it does.

Note that all of these methods, like many methods on the EntityValue
interface, return a self-reference for convenience so that you can chain
operations. For example:

ec.entity.makeValue(“Example”).setAll(fields)
 .setSequencedIdPrimary().create()

While this example is interesting, only in rare cases should you create a
record directly using the Entity Facade API (accessed as ec.entity). In
general you should do CrUD operations through services, and there are
automatic CrUD services for all entities available through the Service
Facade. These services have no definition, they exist implicitly and are
driven only the entity definition.

52

We’ll discuss the Service Facade more below in the context of the logic
layer, but here is an example of what that same operation would look like
using an implicit automatic entity service:

ec.service.sync().name("create", "Example")
 .parameters(fields).call()

Most of the Moqui Framework API methods return a self-reference for
convenient chaining of method calls like this. The main difference between
the two is that one goes through the Service Facade and the other doesn’t.
There are some advantages of going through the Service Facade (such as
transaction management, flow control, security options, and so much more),
but many things are the same between the two calls including automatic
cleanup and type conversion of the fields passed in before performing the
underlying operation.

Also note that with the implicit automatic entity service you don’t have to
explicitly set the sequenced primary ID as it automatically determines that
there is a single primary and if it is not present in the parameters passed
into the service then it will generate one.

However you do the operation, only the entity fields that are modified or
passed in are actually updated. The EntityValue object will keep track of
which fields have been modified and only create or update those when the
operation is done in the database. You can ask an EntityValue object if it is
modified using the isModified() method, and you can get restore it to its
state in the database (populating all fields, not just the modified ones) using
the refresh() method.

If you want to find all of the differences between the field values currently in
the EntityValue and the corresponding column values in the database, use
the checkAgainstDatabase(List messages) method. This method is
used when asserting (as opposed to loading) an entity-facade-xml file
and can also be used manually if you want to write Java or Groovy code
check the state of data.

Finding Entity Records
Finding entity records is done using the EntityFind interface. Rather than
using a number of different methods with different optional parameters
through the EntityFind interface you can call methods for the aspects of
the find that you care about, and ignore the rest. You can get a find object
from the EntityFacade with something like:

ec.getEntity().makeFind("moqui.example.Example")

Most of the methods on the EntityFind interface return a reference to the
object so that you can chain method calls instead of putting them in
separate statements. For example a find by the primary on the Example
entity would look like this:

53

EntityValue example =
 ec.getEntity().makeFind("moqui.example.Example")
 .condition(“exampleId”, exampleId).one();

The EntityFind interface has methods on it for:

• conditions (both where and having)
• fields to select
• fields to order the results by
• whether or not to cache the results
• the offset and limit to pass to the datasource to limit results
• database options like distinct, and for update
• JDBC options like result set type and concurrency, fetch size, and

maximum number of rows

There are various options for conditions, some on the EntityFind
interface itself and a more extensive set available through the
EntityConditionFactory interface. To get an instance of this interface
use the EntityFacade.getConditionFactory() method, something
like:

EntityConditionFactory ecf =
 ec.getEntity().getConditionFactory();
ef.condition(ecf.makeCondition(...));

For find forms that follow the standard Moqui pattern (used in XML Form find
fields and can be used in templates or JSON or XML parameter bodies too),
just use the EntityFind.searchFormInputs() method.

Once all of these options have been specified you can do any of these
actual operations to get results or make changes:

• get a single EntityValue (one() method)
• get a List of EntityValue objects (list() method)
• get an EntityListIterator to handle a larger set of results in smaller batches

(with the the iterator() method)
• get a count of matching results (count() method)
• update all matching records with specified fields (updateAll() method)
• delete all matching records (delete() method)

Flexible Finding with View Entities
You probably noticed that the EntityFind interface operates on a single
entity. Actually, you can have it operate on multiple entities using the
EntityDynamicView interface (get an instance using the
EntityFind.makeEntityDynamicView() method).

To do a query across multiple entities joined together represented by a
single entity name you can create a view entity using an XML definition that
lives along side of normal entity definitions.

54

A view entity consists of one or more member entities joined together with
key mappings and a set of fields aliased from the member entities with
optional functions associated with them. The view entity can also have
conditions associated with it to encapsulate some sort of constraint on the
data to be included in the view.

Here is an example of a view-entity XML snippet from the
ExampleViewEntities.xml file in the example component:

<view-entity entity-name="ExampleFeatureApplAndEnum"
 package-name="moqui.example">
 <member-entity entity-alias="EXFTAP"
 entity-name="ExampleFeatureAppl"/>
 <member-entity entity-alias="ENUM"
 entity-name="moqui.basic.Enumeration"
 join-from-alias="EXFTAP">
 <key-map field-name="exampleFeatureApplEnumId"/>
 </member-entity>
 <alias-all entity-alias="EXFTAP"/>
 <alias-all entity-alias="ENUM"/>
</view-entity>

Just like an entity a view entity has a name and exists in a package using
the @entity-name and @package-name attributes on the view-entity
element.

Each member entity is represented by a member-entity element and is
uniquely identified by an alias in the @entity-alias attribute. Part of the
reason for this is that the same entity can be a member in a view entity
multiple times with a different alias for each one.

Note that the second member-entity element also has a @join-from-
alias attribute to specify that it is joined to the first member entity. Only the
first member entity does not have a @join-from-alias attribute. If you
want the current member entity to be optional in the join (a left outer join in
SQL) then just set the @join-optional attribute to true.

To describe how the two entities relate to each other use one or more key-
map elements under the member-entity element. The key-map element
has two attributes: @field-name and @related-field-name. Note that
the @related-field-name attribute is optional if matching the primary
key field on the current member entity.

Fields can be aliased in sets using the alias-all element, as in the
example above, or individually using the alias element. If you want to have
a function on the field then alias them individually with the alias element.
Note for SQL databases that if any aliased field has a function then all other
fields that don’t have a function but that are selected in the query will be
added to the group by clause to avoid invalid SQL.

55

56

8. Logic and Services
Service Definition

Service Implementation

Inline Service Logic

Java Class Methods

Service Scripts

Add Your Own Service Runner

Overview of XML Actions

57

9. User Interfaces
XML Screens
Screens in Moqui are organized in two ways:

• each screen exists in an hierarchy of subscreens
• a screen may be a node in a graph tied to other nodes by transitions

The hierarchy model is used to reference the screen, and in a URL specify
which screen to render by its path in the hierarchy. Screens also contain
links to other screens (literally a hyperlink or a form submission) that is more
like the structure of going from one node to another in a graph through a
transition.

Subscreens
The subscreen hierarchy is primarily used to dynamically include another
screen, a subscreen or child screen. The subscreens of a screen can also
be used to populate a menu.

When a screen is rendered it is done with a root screen and a list of screen
names.

The root screen is configured per webapp in the Moqui Conf XML file with
the moqui-conf.webapp-list.webapp.root-screen element.
Multiple root screens can be configured per webapp based on a hostname
pattern, providing a convenient means of virtual hosting within a single
webapp. Note that there is no root screen specified in the
MoquiDefaultConf.xml file, so it needs to be specified in conf file specified at
runtime.

You should have at least one catch-all root-screen element meaning that
the @host is set to the regular expression ".*". See the sample runtime
conf files, such as the MoquiDevConf.xml file, for an example.

If the list of subscreen names does not reach a leaf screen (with no
subscreens) then a the default subscreen, specified with the
screen.subscreens.@default-item attribute will be used. Because of
this any screen that has subscreens should have a default subscreen.

There are three ways to add subscreens to a screen:

1. for screens within a single application, by directory structure: create a
directory in the directory where the parent screen is named the same as

58

the parent screen's filename and put XML Screen files in that directory
(name=filename up to .xml, title=screen.default-title, location=parent
screen minus filename plus directory and filename for subscreen)

2. for including screens that are part of another application, or shared and
not in any application, use the subscreens-item element below the
screen.subscreens element

3. for adding screens, removing screens, or changing order and title of
screens of a separate application add a record in the
moqui.screen.SubscreensItem entity

For #1 a directory structure would look something like this (from the
Example application):

• ExampleApp.xml
• ExampleApp

• Feature.xml
• Feature

• FindExampleFeature.xml
• EditExampleFeature.xml

• Example.xml
• Example

• FindExample.xml
• EditExample.xml

The pattern to notice is that if there is are subscreens there should be a
directory with the same name as the XML Screen file, just without the .xml
extension. The Feature.xml file is an example of a screen with
subscreens, whereas the FindExampleFeature.xml has no subscreens
(it is a leaf in the hierarchy of screens).

For approach #2 the subscreens-item element would look something like
this element from the apps.xml file used to mount the Example app’s root
screen:

<subscreens-item name="example"
 location="component://example/screen/ExampleApp.xml"
 menu-title="Example" menu-index="8"/>

For #3 the record in the database in the SubscreensItem entity would
look something like this (an adaptation of the XML element above):

<moqui.screen.SubscreensItem subscreenName="example"
 userGroupId="ALL_USERS" menuTitle="Example"
 menuIndex="8" menuInclude="Y"
 screenLocation="component://webroot/screen/webroot/
apps.xml" subscreenLocation="component://example/screen/
ExampleApp.xml"/>

59

Within the widgets (visual elements) part your screen you specify where to
render the active subscreen using the subscreens-active element. You
can also specify where the menu for all subscreens should be rendered
using the subscreens-menu element. For a single element to do both with
a default layout use the subscreens-panel element.

While the full path to a screen will always be explicit, when following the
default subscreen item under each screen there can be multiple defaults
where all but one have a condition. In the webroot.xml screen there is an
example of defaulting to an alternate subscreen for the iPad:

<subscreens default-item="apps">
 <conditional-default
 condition="(ec.web.request.getHeader('User-
Agent')?:'').matches('.*iPad.*')"
 item="ipad"/>
</subscreens>

With this in place an explicit screen path will go to either the “apps”
subscreen or the “ipad” subscreen, but if neither is explicit it will default to
the ipad.xml subscreen if the User-Agent matches, otherwise it will default
to the normal apps.xml subscreen. Both of these have the example and
tools screen hierarchies under them but have slightly different HTML and
CSS to accommodate different platforms.

Once a screen such as the FindExample screen is rendered through one of
these two its links will retain that base screen path in URLs generated from
relative screen paths so the user will stay in the path the original default
pointed to.

Transitions
A transition is defined as a part of a screen and is how you get from one
screen to another, processing input if applicable along the way. A transition
can of course come right back to the same screen and when processing
input often does.

The logic in transitions (transition actions) should be used only for
processing input, and not for preparing data for output. That is the job of
screen actions which, conversely, should not be used to process input (more
on that below).

When a XML Screen is running in a web application the transition comes
after the screen in the URL. In any context the transition is the last entry in
the list of subscreen path elements. For example the first path goes to the
EditExample screen, and the second to the updateExample transition within
that screen:
/apps/example/Example/EditExample
/apps/example/Example/EditExample/updateExample

60

When a transition is the target of a HTTP request any actions associated
with the transition will be run, and then a redirect will be sent to ask the
HTTP client (usually a web browser) to go to the URL of the screen the
transition points to. If the transition has no logic and points right to another
screen or external URL when a link is generated to that transition it will
automatically go to that other screen or external URL and skip calling the
transition altogether. Note that these points only apply to a XML Screen
running in a web-based application.

A simple transition that goes from one screen to another, in this case from
FindExample to EditExample, looks like this:

<transition name="editExample">
 <default-response url="../EditExample"/>
</transition>

The path in the @url attribute is based on the location of the two screens as
siblings under the same parent screen. In this attribute a simple dot (“.”)
refers to the current screen and two dots (“..”) refers to the parent screen,
following the same pattern as Unix file paths.

For screens that have input processing the best pattern to use is to have the
transition call a single service. With this approach the service is defined to
go along with the form that is submitted to the corresponding transition. This
makes the designs of both more clear and offers other benefits such as
some of the validations on the service definition are used to generate
matching client-side validations. This sort of transition would look like this
(the updateExample transition on the EditExample screen):

 <transition name="updateExample">
 <service-call
name="org.moqui.example.ExampleServices.updateExample"/>
 <default-response url="."/>
 </transition>

In this case the default-response.@url attribute is simple a dot which
refers to the current screen and means that after this transition is processed
it will go to the current screen.

A screen transition can also have actions instead of a single service call by
using the actions element instead of the service-call element. Just as
with all actions elements in all XML files in Moqui, the subelements are
standard Moqui XML Actions that are transformed into a Groovy script. This
is what a screen transition with actions might look like (simplified example,
also from the EditExample screen):

<transition name="getExampleTypeEnumList">
 <actions>
 <entity-find entity-name="..." list="...">
 <econdition field-name="..." from="..."/>

61

 <order-by field-name="..."/>
 </entity-find>
 <script>
ec.web.sendJsonResponse([exampleTypeEnumList:exampleType
EnumList])
 </script>
 </actions>
 <default-response type="none"/>
</transition>

This example also shows how you would do a simple entity find operation
and return the results to the HTTP client as a JSON response. Note the call
to the ec.web.sendJsonResponse() method and the “none” value for
the default-response.@type attribute telling it to not process any
additional response.

As implied by the element default-response you can also conditionally
choose a response using the conditional-response element. This
element is optional and you can specify any number of them, though you
should always have at least one default-response element to be used
when none the conditions are met. There is also an optional error-
response which you may use to specify the response in the case of an
error in the transition actions.

A transition with a conditional-response would look something like this
simplified example from the DataExport screen:

<transition name="EntityExport.xml">
 <actions>
 <script><![CDATA[
 if (...) noResponse = true
]]></script>
 </actions>
 <conditional-response type="none">
 <condition>
 <expression>noResponse</expression>
 </condition>
 </conditional-response>
 <default-response url="."/>
</transition>

This is basically allowing the script to specify that no response should be
sent (when it sends back the data export), otherwise it transitions back to
the current screen. Note that the text under the condition.expression
element is simply a Groovy expression that will be evaluated as a boolean.

TODO: describe other attributes in attlist.response (?)

62

RESTful Transitions
With the popularity of RESTful web services we need a way for transitions to
be sensitive to the HTTP request method when running in a web-based
application. This is handled in Moqui Framework using the
transition.@method attribute, like this:

<transition name="ExampleEntity" method="put">
 <path-parameter name="exampleId"/>
 <service-call
name="org.moqui.example.ExampleServices.updateExample"
 in-map="ec.web.parameters"
 web-send-json-response="true"/>
 <default-response type="none"/>
</transition>

To test this transition use a curl command something like this to update the
exampleName field of the Example entity with an exampleId of “100010”:

curl -X PUT -H "Content-Type: application/json" \
 -H "Authorization: Basic am9obi5kb2U6bW9xdWk=" \
 --data '{ "exampleName":"REST Test - Rev 2" }' \
 http://.../apps/example/ExampleEntity/100010

There are some important things to note about this example that make it
easier to create REST wrappers around internal Moqui services:

• uses HTTP Basic authentication (john.doe/moqui), which Moqui
automatically recognizes and uses for authentication

• uses the automatic JSON body input mapping to parameters (the JSON
string must have a Map root object)

• the exampleId is passed as part of the path and treated as a normal
parameter using the path-parameter element

• uses the ec.web.parameters Map as the in-map to explicitly pass the
web parameters to the service (could also use ec.context for the entire
context which would also include the web parameters, but this way is
more explicit and constrained)

• sends a JSON response with the service-call.web-send-json-
response convenience attribute and a type “none” response

There are various other examples of handling RESTful service requests in
the ExampleApp.xml file.

Parameters and Web Settings
One of the first things in a screen definition is the parameters that are
passed to the screen. This is used when building a URL to link to the screen
or preparing a context for the screen rendering. You do this using the
parameter element, which generally looks something like this:

63

<parameter name="exampleId"/>

The @name attribute is the only required one, and there are others if you
want a default static value (with the @value attribute) or to get the value by
default from a field in the context other than one matching the parameter
name (with the @from attribute).

While parameters apply to all render modes there are certain settings that
apply only when the screen is rendered in a web-based application. These
options are on the screen.web-settings element, including:

• allow-web-request: Defaults to true. Set to false to not allow access to
an HTTP client.

• require-encryption: Defaults to true. Set to false for screens that are
less secure and don’t requite encryption (ie HTTPS).

• mime-type: Defaults to “text/html”. This can vary based on how the
screen is rendered (the render mode) but when always producing a
certain type of output set the corresponding mime type here.

• character-encoding: Defaults to UTF-8 for text output. If you are
rendering text with a different encoding, set it here.

Screen Actions and Pre-Actions
Before rendering the visual elements (widgets) of a screen data preparation
is done using XML Actions under the screen.actions element. These are
the same XML Actions used for services and other tools and are described
in the Logic and Services chapter. There are elements for running services
and scripts (inline Groovy or any type of script supported through the
Resource Facade), doing basic entity and data moving operations, and so
on.

Screen actions should be used only for preparing data for output. Use
transition actions to process input.

When screens are rendered it is done in the order they are found in the
screen path and the actions for each screen are run as each screen in the
list is rendered. To run actions before the first screen in the path is rendered
use the pre-actions element. This is used mainly for preparing data
needed by screens that will include the current screen (ie before the current
screen in the screen path). When using this keep in mind that a screen can
be included by different screens in different circumstances.

Widgets
The elements under the screen.widgets element are the actual visual
elements that are rendered or when producing text that actually produce the
output text. The most common widgets are XML Forms (using the form-
single and form-list elements) and included templates. See the
section below for details about XML Forms.

64

While XML Forms are not specific to any render mode templates by their
nature are particular to a specific render mode. This means that to support
multiple types of output you’ll need multiple templates. The webroot.xml
screen (the default root screen) has an example of including multiple
templates for different render modes:

<render-mode>
 <text type="html" location="component://webroot/
screen/includes/Header.html.ftl"/>
 <text type="xsl-fo" location="component://webroot/
screen/includes/Header.xsl-fo.ftl"
 no-boundary-comment="true"/>
</render-mode>

The same screen also has an example of supporting multiple render modes
with inline text:

<render-mode>
 <text type="html"><![CDATA[</body></html>]]></text>
 <text type="xsl-fo"><![CDATA[
 </fo:flow></fo:page-sequence></fo:root>
]]></text>
</render-mode>

These are the widget elements for displaying basic things:

• link:
• image:
• label:

To structure screens use these widget elements:

• section:
• section-iterate:
• container:
• container-panel:
• container-dialog:
• include-screen:

TODO: more elaborate example with various of these elements used

Conditions and Fail-Widgets

Custom Elements and Macro Templates

65

XML Forms

Templates

PDF, CSV, XML and Other Screen Output

Standalone Screens

Screen Sub-Content

66

10. System Interfaces

XML and CSV Output

Web Services

XML-RPC and JSON-RPC

RESTful Interfaces

Simple Sending and Receiving JSON

Enterprise Integration with Apache Camel

Exporting All Records Related to One or More Records

67

Ad-hoc Data Exports

68

11. Security

Authentication

Internal Authentication

External Auth with Apache Shiro

Password Options

Login History

Simple Permissions

Artifact-Aware Authorization

Artifact Execution Stack and History

Artifact Authz

69

Artifact Tarpit

Audit Logging

70

12. The Tools Application

Auto Screens

Data View

Entity Tools

Data Edit

Data Export

Data Import

Speed Test

Localization

71

Service Runner

System Info

Artifact Statistics

Audit Log

Cache Statistics

Server Visits

72

13. Mantle Business Artifacts

Universal Data Model (UDM)

Universal Service Library (USL)

Universal Business Process Library (UBPL)

73

